AUGMENTING LOGICAL REASONING CAPABILITIES WITH LARGE LANGUAGE MODELS

828 篇文章

已下架不支持订阅

DetermLR是一种新的推理框架,通过将推理过程视为不确定到确定前提的转换,提升大型语言模型(LLM)的逻辑推理能力。该框架包括前提识别、优先级和探索、以及具有推理记忆的迭代过程,旨在更有效地处理推理任务,提高在LogiQA、ProofWriter、FOLIO和LogicalDepression等任务上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《FROM INDETERMINACY TO DETERMINACY: AUGMENTING LOGICAL REASONING CAPABILITIES WITH LARGE LANGUAGE MODELS》的翻译。

从不确定性到确定性:用大型语言模型增强逻辑推理能力

摘要

大型语言模型(LLM)的最新进展彻底改变了推理任务的格局。为了增强LLM模拟人类推理的能力,许多先前的工作都集中在使用特定的思维结构(如链、树或图)对中间推理步骤进行建模。然而,基于LLM的推理在三个关键方面仍然面临挑战:1)为各种任务选择合适的推理结构;2) 充分有效地利用已知的条件来推断新的见解;3) 考虑历史推理经验对未来推理步骤的影响。为了应对这些挑战,我们提出了DetermLR,这是一种新的推理框架,它将推理过程表述为从不确定前提到确定前提的转换过程。这一过程的特点是确定性前提的逐渐积累,使结论越来越清晰。DetermLR包括三个基本组成部分:1)前提识别:我们系统地将前提分为两种不同的类型:确定型和不确定型。这使LLM能够灵活地定制推理结构,以匹配特定的任务复杂性。2) 前提优先级和探索:我们利用定量测量来评估每个前提与目标的相关性,优先考虑更相关的前提,以探索新的见解。3) 具有推理记忆的迭代过程:我们引入了一个推理记忆模

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值