An Empirical Study of Instruction-tuning Large Language Models in Chinese

828 篇文章

已下架不支持订阅

本文对汉语指令调整大型语言模型进行实证研究,探讨基础模型、参数有效方法及指令数据类型的影响,旨在优化对汉语指令的响应。同时,研究了思维链、价值观等因素,公开发布了能与ChatGLM竞争的中国LLM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《An Empirical Study of Instruction-tuning Large Language Models in Chinese》的翻译。

摘要

ChatGPT的成功验证了大型语言模型(LLM)在通用人工智能(AGI)中的潜力。随后,LLM的发布引发了开源社区对指令调优的兴趣,这被认为加速了ChatGPT的复制过程。然而,对世界上最常用的语言——汉语的指令调整LLM的研究仍处于早期阶段。因此,本文对汉语指令调整LLM进行了深入的实证研究,可以作为一本食谱,为有效定制能够更好地响应汉语指令的LLM提供有价值的发现。具体来说,我们系统地探讨了LLM基础、参数有效方法和指令数据类型的影响,这是指令调优的三个最重要的元素。此外,我们还进行了实验来研究其他因素的影响,如思维链数据和人类价值取向。我们希望这一实证研究能够为ChatGPT的中文公开版做出微薄的贡献。本文将发布一个强大的中国LLM,可与ChatGLM相媲美。代码和数据可在https://github.com/PhoebusSi/Alpaca-CoT上找到。

1 引言

2 指令调整三元组

3

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值