本文是LLM系列文章,针对《EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models》的翻译。
摘要
大型语言模型(LLM)通常存在知识截断或谬论问题,这意味着它们不知道看不见的事件,或者由于过时/嘈杂的数据而生成具有错误事实的文本。为此,出现了许多LLM的知识编辑方法——旨在巧妙地注入/编辑更新的知识或调整不期望的行为,同时最大限度地减少对无关输入的影响。然而,由于各种知识编辑方法之间的显著差异和任务设置的差异,社区没有可用的标准实施框架,这阻碍了从业者将知识编辑应用于应用程序。为了解决这些问题,我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架。它支持各种前沿的知识编辑方法,可以很容易地应用于许多著名的LLM,如T5、GPT-J、LlaMA等。经验上,我们用EASYEDIT报告了LlaMA-2的知识编辑结果,表明知识编辑在可靠性和通用性方面超越了传统的微调。我们已经在GitHub上发布了源代码,以及Google Colab教程和全面的文档,供初学者入门。此外,我们还提供了一个用于实时知识编辑的在线系统和一个演示视频。
1 引言
大型语言模型(llm)彻底改变了现代自然语言处理(NLP),显著提高了各种任务的性