LARGE LANGUAGE MODELS AS OPTIMIZERS

828 篇文章

已下架不支持订阅

本文介绍了将大型语言模型(LLM)作为优化器的OPRO方法,通过自然语言描述优化任务。在多个示例中,如线性回归和旅行推销员问题,OPRO展示出逐步改进解决方案的能力。在提示优化实验中,OPRO生成的提示在GSM8K和Big Bench Hard任务上分别优于人类设计的提示8%和50%。未来的研究将关注降低初始化敏感性、平衡探索与开发,以及如何利用错误案例来改进指令生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LARGE LANGUAGE MODELS AS OPTIMIZERS》的翻译。

摘要

优化无处不在。虽然基于导数的算法是解决各种问题的强大工具,但梯度的缺乏给许多现实世界的应用带来了挑战。在这项工作中,我们提出了PROmpting优化(OPRO),这是一种利用大型语言模型(LLM)作为优化器的简单有效的方法,其中优化任务用自然语言描述。在每个优化步骤中,LLM都会从包含先前生成的解决方案及其值的提示中生成新的解决方案,然后对新解决方案进行评估,并将其添加到下一个优化步骤的提示中。我们首先展示了关于线性回归和旅行推销员问题的OPRO,然后继续进行提示优化,目标是找到最大限度提高任务准确性的指令。通过各种LLM,我们证明了OPRO优化的最佳提示在GSM8K上比人类设计的提示高出8%,在Big Bench Hard任务上高出50%。

1 引言

2 OPRO:LLM作为优化器

3 激励性例子:数学优化

4 应用:提示优化

5 提示优化实验

6 相关工

已下架不支持订阅

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值