Exploring Large Language Models for Knowledge Graph Completion

828 篇文章

已下架不支持订阅

本文研究了如何使用大型语言模型(LLM)解决知识图谱的不完全性问题,提出了知识图谱LLM(KGLLM)框架,通过三元组建模和预测,实现了在知识图谱补全任务中的优秀性能。实验表明,微调较小模型的效果甚至优于ChatGPT和GPT-4。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Exploring Large Language Models for Knowledge Graph Completion》的翻译。

探索用于知识图谱补全的大型语言模型

摘要

知识图谱在众多人工智能任务中发挥着至关重要的作用,但它们经常面临不完全性问题。在这项研究中,我们探索利用大型语言模型(LLM)来补全知识图谱。我们将知识图谱中的三元组视为文本序列,并引入了一个名为知识图谱LLM(KGLLM)的创新框架来对这些三元组进行建模。我们的技术使用三元组的实体和关系描述作为提示,并利用响应进行预测。在各种基准知识图谱上的实验表明,我们的方法在三重分类和关系预测等任务中取得了最先进的性能。我们还发现,微调相对较小的模型(例如,LLaMA-7B、ChatGLM6B)的性能优于最近的ChatGPT和GPT-4。

1 引言

2 相关工作

3 方法

4 实验

5 结论

在这项工作中,我们提出了一种新的KG补全方法,称为KG-LLM。我们的方法在KG补全任务(如三重分类和关系预测)中获得了最先进的性能。对于未来的工作,我们计划将我们的KG-LL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值