Knowledge Distillation of Large Language Models

MINILLM:大型语言模型的知识蒸馏与优化
MINILLM是一种新的知识蒸馏方法,用于从大型语言模型(LLM)中提取知识,以训练更小的模型。它通过反向Kullback-Leibler散度(KLD)来优化,避免学生模型高估教师分布的低概率区域。MINILLM通过策略梯度优化、教师混合采样和长度归一化来提高训练效果,适用于不同大小的模型。实验表明,MINILLM在指令跟随任务中优于标准KD方法,具有更低的曝光偏差、更好的校准和长文本生成性能。

这是大模型系列模型的文章,针对《Knowledge Distillation of Large Language Models》的翻译。

摘要

知识蒸馏(KD)是一种很有前途的技术,可以减少大型语言模型(LLM)的高计算需求。然而,以前的KD方法主要应用于白盒分类模型或训练小模型来模仿像ChatGPT这样的黑盒模型API。如何有效地从白盒生成LLM中提取知识仍有待探索,随着LLM的蓬勃发展,这一点变得越来越重要。在这项工作中,我们提出了MINILLM,它从生成的较大语言模型中提取较小的语言模型。我们首先将标准KD方法中的前向Kullback-Leibler散度(KLD)目标替换为更适合生成语言模型上的KD的反向KLD,以防止学生模型高估教师分布的低概率区域。然后,我们推导出一种有效的优化方法来学习这个目标。在指令跟随设置中的大量实验表明,MINILLM模型生成更精确的响应,具有更高的整体质量、更低的曝光偏差、更好的校准和更高的长文本生成性能。我们的方法也适用于具有120M到13B参数的不同模型族。我们将在https://aka.ms/MiniLLM发布我们的代码和模型检查点。

1 引言

在这里插入图片描述
随着大型语言模型(LLM; H Z D + HZD^+

Table of Contents Introduction Model Summary Model Downloads Evaluation Results Chat Website & API Platform How to Run Locally License Citation Contact 1. Introduction We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. 2. Model Summary Architecture: Innovative Load Balancing Strategy and Training Objective On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing. We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance. It can also be used for speculative decoding for inference acceleration. Pre-Training: Towards Ultimate Training Efficiency We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model. Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap. This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead. At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours. Post-Training: Knowledge Distillation from DeepSeek-R1 We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3. 3. Model Downloads Model #Total Params #Activated Params Context Length Download DeepSeek-V3-Base 671B 37B 128K 🤗 Hugging Face DeepSeek-V3 671B 37B 128K 🤗 Hugging Face Note The total size of DeepSeek-V3 models on Hugging Face is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights. To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: How_to Run_Locally. For developers looking to dive deeper, we recommend exploring README_WEIGHTS.md for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback. 4. Evaluation Results Base Model Standard Benchmarks Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 72B LLaMA3.1 405B DeepSeek-V3 Architecture - MoE Dense Dense MoE # Activated Params - 21B 72B 405B 37B # Total Params - 236B 72B 405B 671B English Pile-test (BPB) - 0.606 0.638 0.542 0.548 BBH (EM) 3-shot 78.8 79.8 82.9 87.5 MMLU (Acc.) 5-shot 78.4 85.0 84.4 87.1 MMLU-Redux (Acc.) 5-shot 75.6 83.2 81.3 86.2 MMLU-Pro (Acc.) 5-shot 51.4 58.3 52.8 64.4 DROP (F1) 3-shot 80.4 80.6 86.0 89.0 ARC-Easy (Acc.) 25-shot 97.6 98.4 98.4 98.9 ARC-Challenge (Acc.) 25-shot 92.2 94.5 95.3 95.3 HellaSwag (Acc.) 10-shot 87.1 84.8 89.2 88.9 PIQA (Acc.) 0-shot 83.9 82.6 85.9 84.7 WinoGrande (Acc.) 5-shot 86.3 82.3 85.2 84.9 RACE-Middle (Acc.) 5-shot 73.1 68.1 74.2 67.1 RACE-High (Acc.) 5-shot 52.6 50.3 56.8 51.3 TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9 NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0 AGIEval (Acc.) 0-shot 57.5 75.8 60.6 79.6 Code HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2 MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4 LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4 CRUXEval-I (Acc.) 2-shot 52.5 59.1 58.5 67.3 CRUXEval-O (Acc.) 2-shot 49.8 59.9 59.9 69.8 Math GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3 MATH (EM) 4-shot 43.4 54.4 49.0 61.6 MGSM (EM) 8-shot 63.6 76.2 69.9 79.8 CMath (EM) 3-shot 78.7 84.5 77.3 90.7 Chinese CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7 C-Eval (Acc.) 5-shot 81.4 89.2 72.5 90.1 CMMLU (Acc.) 5-shot 84.0 89.5 73.7 88.8 CMRC (EM) 1-shot 77.4 75.8 76.0 76.3 C3 (Acc.) 0-shot 77.4 76.7 79.7 78.6 CCPM (Acc.) 0-shot 93.0 88.5 78.6 92.0 Multilingual MMMLU-non-English (Acc.) 5-shot 64.0 74.8 73.8 79.4 Note Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks. For more evaluation details, please check our paper. Context Window Evaluation results on the Needle In A Haystack (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to 128K. Chat Model Standard Benchmarks (Models larger than 67B) Benchmark (Metric) DeepSeek V2-0506 DeepSeek V2.5-0905 Qwen2.5 72B-Inst. Llama3.1 405B-Inst. Claude-3.5-Sonnet-1022 GPT-4o 0513 DeepSeek V3 Architecture MoE MoE Dense Dense - - MoE # Activated Params 21B 21B 72B 405B - - 37B # Total Params 236B 236B 72B 405B - - 671B English MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5 MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1 MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9 DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6 IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1 GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1 SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9 FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3 LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7 Code HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6 LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5 LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6 Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6 SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0 Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7 Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6 Math AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2 MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2 CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2 Chinese CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9 C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5 C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8 Note All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models. Open Ended Generation Evaluation Model Arena-Hard AlpacaEval 2.0 DeepSeek-V2.5-0905 76.2 50.5 Qwen2.5-72B-Instruct 81.2 49.1 LLaMA-3.1 405B 69.3 40.5 GPT-4o-0513 80.4 51.1 Claude-Sonnet-3.5-1022 85.2 52.0 DeepSeek-V3 85.5 70.0 Note English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric. 5. Chat Website & API Platform You can chat with DeepSeek-V3 on DeepSeek's official website: chat.deepseek.com We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com 6. How to Run Locally DeepSeek-V3 can be deployed locally using the following hardware and open-source community software: DeepSeek-Infer Demo: We provide a simple and lightweight demo for FP8 and BF16 inference. SGLang: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes, with Multi-Token Prediction coming soon. LMDeploy: Enables efficient FP8 and BF16 inference for local and cloud deployment. TensorRT-LLM: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon. vLLM: Support DeepSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism. LightLLM: Supports efficient single-node or multi-node deployment for FP8 and BF16. AMD GPU: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes. Huawei Ascend NPU: Supports running DeepSeek-V3 on Huawei Ascend devices in both INT8 and BF16. Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation. Here is an example of converting FP8 weights to BF16: cd inference python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights Note Hugging Face's Transformers has not been directly supported yet. 6.1 Inference with DeepSeek-Infer Demo (example only) System Requirements Note Linux with Python 3.10 only. Mac and Windows are not supported. Dependencies: torch==2.4.1 triton==3.0.0 transformers==4.46.3 safetensors==0.4.5 Model Weights & Demo Code Preparation First, clone our DeepSeek-V3 GitHub repository: git clone https://github.com/deepseek-ai/DeepSeek-V3.git Navigate to the inference folder and install dependencies listed in requirements.txt. Easiest way is to use a package manager like conda or uv to create a new virtual environment and install the dependencies. cd DeepSeek-V3/inference pip install -r requirements.txt Download the model weights from Hugging Face, and put them into /path/to/DeepSeek-V3 folder. Model Weights Conversion Convert Hugging Face model weights to a specific format: python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16 Run Then you can chat with DeepSeek-V3: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200 Or batch inference on a given file: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE 6.2 Inference with SGLang (recommended) SGLang currently supports MLA optimizations, DP Attention, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks. Notably, SGLang v0.4.1 fully supports running DeepSeek-V3 on both NVIDIA and AMD GPUs, making it a highly versatile and robust solution. SGLang also supports multi-node tensor parallelism, enabling you to run this model on multiple network-connected machines. Multi-Token Prediction (MTP) is in development, and progress can be tracked in the optimization plan. Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3 6.3 Inference with LMDeploy (recommended) LMDeploy, a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows. For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: InternLM/lmdeploy#2960 6.4 Inference with TRT-LLM (recommended) TensorRT-LLM now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3. 6.5 Inference with vLLM (recommended) vLLM v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers pipeline parallelism allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the vLLM instructions. Please feel free to follow the enhancement plan as well. 6.6 Inference with LightLLM (recommended) LightLLM v1.0.1 supports single-machine and multi-machine tensor parallel deployment for DeepSeek-R1 (FP8/BF16) and provides mixed-precision deployment, with more quantization modes continuously integrated. For more details, please refer to LightLLM instructions. Additionally, LightLLM offers PD-disaggregation deployment for DeepSeek-V2, and the implementation of PD-disaggregation for DeepSeek-V3 is in development. 6.7 Recommended Inference Functionality with AMD GPUs In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the SGLang instructions. 6.8 Recommended Inference Functionality with Huawei Ascend NPUs The MindIE framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the instructions here. 7. License This code repository is licensed under the MIT License. The use of DeepSeek-V3 Base/Chat models is subject to the Model License. DeepSeek-V3 series (including Base and Chat) supports commercial use. 8. Citation @misc{deepseekai2024deepseekv3technicalreport, title={DeepSeek-V3 Technical Report}, author={DeepSeek-AI}, year={2024}, eprint={2412.19437}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.19437}, } 9. Contact If you have any questions, please raise an issue or contact us at service@deepseek.com.
最新发布
07-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值