【lightoj1010】

本文探讨了一个经典的棋盘问题——如何在m*n的棋盘上放置最多的马,使得任意两个马不会互相攻击。通过分析发现当m和n均大于2时,答案为棋盘上黑色格子和白色格子的最大数量;当m或n为1或2时,则需采用特定的放置策略来获得最大数量。

Given an m x n chessboard where you want to place chess knights. You have to find the number of maximum knights that can be placed in the chessboard such that no two knights attack each other.

Those who are not familiar with chess knights, note that a chess knight can attack 8 positions in the board as shown in the picture below.


Input

Input starts with an integer T (≤ 41000), denoting the number of test cases.

Each case contains two integers m, n (1 ≤ m, n ≤ 200). Here m and n corresponds to the number of rows and the number of columns of the board respectively.

Output

For each case, print the case number and maximum number of knights that can be placed in the board considering the above restrictions.

Sample Input

3

8 8

3 7

4 10

Sample Output

Case 1: 32

Case 2: 11

Case 3: 20


题目大意:求m*n的棋盘中最多放几个马


思路:T<=41000,搜索肯定超时,只能找规律。

m,n都大于2时ans=max(黑块数,白块数)

其中一个等于1或2时要特殊考虑,是2时要遵循四个一块放,隔四个的规律才能放最多。模拟出这个过程即可

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
    int t,i,m,n,ans;
    cin>>t;
    for(i=1; i<=t; i++)
    {
        scanf("%d%d",&m,&n);
        if(m>n) swap(m,n);
        if(m==1) ans=n;
        else if(m==2)
        {
            int x=(m*n)%8;
            if(x>4) x=4;
            int y=(m*n)/8;
            ans=x+y*4;
        }
        else
        {
            if((m*n)&1) ans=(m*n+1)/2;
            else ans=(m*n)/2;
        }
        printf("Case %d: %d\n",i,ans);
    }
    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值