Problem:
给定一个n,有三个不超过10^9的x,y,z,使得2/n = 1/x + 1/y + 1/z,后三个数是真分数。
Solution:
将已知数2/n进行分解,n/2 = 1/n + 1/(n+1) + 1/(n*(n+1));
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cmath>
#include<cctype>
#include<string>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<vector>
#include<fstream>
#include<list>
using namespace std;
#define ms(s) memset(s,0,sizeof(s))
const double PI = 3.141592653589;
const int INF = 0x3fffffff;
int main(){
// freopen("/Users/really/Documents/code/input","r",stdin);
// freopen("/Users/really/Documents/code/output","w",stdout);
ios::sync_with_stdio(false);
long long n;
cin >> n;
if(n == 1LL || n*(n+1) > 1000000000LL)
cout << "-1" << endl;
else{
cout << n << " " << (n+1) << " " << n*(n+1) << endl;
}
return 0;
}