生成式AI模型微调与评估:从全量微调到参数高效微调
1. 模型微调代码示例
以下是一个来自 train.py 的代码片段,展示了如何使用Hugging Face估计器进行模型微调:
from transformers import (
AutoModelForCausalLM,
Trainer,
TrainingArguments,
)
from datasets import load_from_disk
# Load dataset and convert each row to an instruction prompt
dataset = load_from_disk(...)
dataset = dataset.map(convert_row_to_instruction)
# Define and load the model for fine-tuning
model_checkpoint = "..." # generative model like Llama2, Falcon
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
# Convert text into tokens using the model's tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenized_dataset = dataset.map(
lambda row: tokenizer(...)
)
trai
超级会员免费看
订阅专栏 解锁全文
22

被折叠的 条评论
为什么被折叠?



