【昇思初学入门】第三天打卡

数据集Dataset

心得体会

  1. 昇思提供了丰富的数据集,文本、图像、音频等都有内置
  2. MindSpore的Pipeline设计和并行处理能力使得数据预处理更加高效
  3. 可通过GeneratorDataset接口实现自定义方式的数据集加载
  4. 可迭代的数据集,可以通过迭代的方式逐步获取数据样本,生成器generator也属于可迭代的数据集类型

笔记

  1. 数据获取
import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt
# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

这里找数据集:https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/api_python/mindspore.dataset.html

2.数据迭代

# shuffle 消除数据排列造成的分布不均问题,及打乱数据顺序
train_dataset = MnistDataset("MNIST_Data/train", shuffle=True)
def visualize(dataset):
    figure = plt.figure(figsize=(4, 4))
    cols, rows = 3, 3

    plt.subplots_adjust(wspace=0.5, hspace=0.5)

    for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):
        figure.add_subplot(rows, cols, idx + 1)
        plt.title(int(label))
        plt.axis("off")
        plt.imshow(image.asnumpy().squeeze(), cmap="gray")
        if idx == cols * rows - 1:
            break
    plt.show()

加载的数据显示
3. 数据预处理

#图像统一除以255,数据类型由uint8转为了float32
train_dataset = train_dataset.map(vision.Rescale(1.0 / 255.0, 0), input_columns='image')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值