TensorFlow练习5: 训练一个简单的游戏AI(Deep Q Network)

Deep Q Network是DeepMind最早(2013年)提出来的,是深度强化学习方法。

最开始AI什么也不会,通过给它提供游戏界面像素和分数,慢慢把它训练成游戏高手。

Github上有不少DQN实现,在本帖中,我使用TensorFlow训练一个简单的游戏AI。

  1. 使用pygame写一个简单的小游戏
  2. 使用强化学习训练游戏AI

pygame小游戏

自制的垃圾游戏。

操作:按住鼠标左键左移棒子,按住鼠标右键右移棒子。每次接住小方块得一分。

TensorFlow练习5: 训练一个简单的游戏AI(Deep Q Network)
把棒子调短,提高游戏难度,看看训练出来的游戏AI有多强

ps. 其实我想做一个俄罗斯方块,呵呵呵呵,留着以后再做。

基于强化学习的AI(TensorFlow)

训练中:

TensorFlow练习5: 训练一个简单的游戏AI(Deep Q Network)

如果你使用Linux,你可以使用htop监控内存使用情况。

刚开始,AI傻傻的,只会控制棒子来回瞎晃,通过try-error,它会慢慢掌握这个游戏。等我一觉醒来,这货已经玩的不亦乐乎了。

ps.准备换一个顶级显卡,CPU玩tensorflow太费劲,看来非游戏玩家也有必要买好显卡。

使用训练出来AI玩游戏

这步要做的就是加载使用前面保存的模型。

上面是自己手动实现的强化学习算法,其实有一个特别好的专门为开发测试AI而设计的库openai gym。OpenAI Gym是一个为比较、构建强化学习Ai的一个Python库,它包含很多测试游戏。

参考:https://www.nervanasys.com/openai/

使用OpenAI Gym创建游戏AI强化学习模型

安装Gym

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值