UVa 818 Cutting Chains

本文探讨了如何解决将多个链连接成一个连续链条的问题,通过枚举和深度优先搜索算法来确定最少需要打开的链接数量。文章详细介绍了输入格式、输出要求以及算法实现过程,包括初始化、链连接判断、遍历检查和搜索策略。

  Cutting Chains 

What a find! Anna Locke has just bought several links of chain some of which may be connected. They are made from zorkium, a material that was frequently used to manufacture jewelry in the last century, but is not used for that purpose anymore. It has its very own shine, incomparable to gold or silver, and impossible to describe to anyone who has not seen it first hand.

Anna wants the pieces joined into a single end-to-end strand of chain. She takes the links to a jeweler who tells her that the cost of joining them depends on the number of chain links that must be opened and closed. In order to minimize the cost, she carefully calculates the minimum number of links that have to be opened to rejoin all the links into a single sequence. This turns out to be more difficult than she at first thought. You must solve this problem for her.

Input 

The input consists of descriptions of sets of chain links, one set per line. Each set is a list of integers delimited by one or more spaces. Every description starts with an integer n, which is the number of chain links in the set, where 1 ≤n ≤15. We will label the links 1, 2,..., n. The integers following n describe which links are connected to each other. Every connection is specified by a pair of integers i,j where 1 ≤i,j ≤n and i ≠j, indicating that chain links i and j are connected, i.e., one passes through the other. The description for each set is terminated by the pair -1 -1, which should not be processed.

The input is terminated by a description starting with n = 0. This description should not be processed and will not contain data for connected links.

Output 

For each set of chain links in the input, output a single line which reads

Set N: Minimum links to open is M

where N is the set number and M is the minimal number of links that have to be opened and closed such that all links can be joined into one single chain.


Sample InputOutput for the Sample Input
5 1 2 2 3 4 5 -1 -1
7 1 2 2 3 3 1 4 5 5 6 6 7 7 4 -1 -1
4 1 2 1 3 1 4 -1 -1
3 1 2 2 3 3 1 -1 -1
3 1 2 2 1 -1 -1
0
Set 1: Minimum links to open is 1
Set 2: Minimum links to open is 2
Set 3: Minimum links to open is 1
Set 4: Minimum links to open is 1
Set 5: Minimum links to open is 1
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
// next[i]代表与第i个链相连的链的编号
vector<int> next[20];

// open[i] = 1 代表第i个链被打开
int open[20];

// connect[i][j] = 1 代表第i,j个链相连
int connect[20][20];

// 链数目
int num;

// 需要最少次数
int min_num;

// 现在所用次数
int now_count;

// 遍历时visit[i] = 1代表第i个链已被遍历过
int visit[20];

// 联通分量个数
int connect_count = 0;

void check(int x);
bool search();
bool dfs_search(int x, int y);

int main()
{
	int s_count = 0;
	while(scanf("%d", &num) && num != 0)
	{
		// 初始化
		memset(open, 0, sizeof(open));
		memset(connect, 0, sizeof(connect));
		for(int i = 1; i <= num; i++)
			next[i] = vector<int>();
		min_num = 15;
		now_count = 0;	
		// 读入情况
		int x, y;
		while(scanf("%d%d", &x, &y) == 2 && !(x == -1 && y == -1))
		{
			if(connect[x][y] == 0)
			{
				connect[x][y] = 1;
				connect[y][x] = 1;
				next[x].push_back(y);
				next[y].push_back(x);	
			}
		}			

		// 枚举所有的情况
		check(1);
		s_count++;
		printf("Set %d: Minimum links to open is %d\n", s_count, min_num);				
	}	
	return 0;
}

// 枚举所有的情况
void check(int x)
{
	if(x == num + 1)
	{/*
		for(int i = 1; i <= num; i++)
			printf("%d: %d ", i, open[i]);
		printf(" now_count : %d\n", now_count);
	*/	// 检查是否有环,连通分量个数是否为去掉点+1,是否有度数大于2的点
		if(search() && now_count < min_num)
		{
			min_num = now_count;
		}	
		return;
	}	

	open[x] = 0;
	check(x+1);
	open[x] = 1;
	now_count++;
	check(x+1);
	now_count--;	
}

// 检查是否有环,连通分量个数是否为去掉点+1,是否有度数大于2的点
bool search()
{
	memset(visit, 0, sizeof(visit));
	connect_count = 0;
	for(int i = 1; i <= num; i++)
	{
		if(open[i] == 0 && visit[i] == 0)
		{
			// 深度优先搜索
			visit[i] = 1;
			connect_count++;
			if(!dfs_search(i, -1))
				return false;
		}			
	}
	if(connect_count <= now_count + 1)	
		return true;	
	else
		return false;
}

// 深度优先搜索
// 由第x个链开始遍历
// y为x的父亲节点,如果x为初始节点,y为-1
bool dfs_search(int x,int y)
{
	int e_count = 0;
	for(int i = 0; i < next[x].size(); i++)
	{
		if(open[next[x][i]] == 0 && visit[next[x][i]] == 0)
		{
			visit[next[x][i]] = 1;
			if(!dfs_search(next[x][i], x))
				return false;
		}
		else if(y != next[x][i] && visit[next[x][i]] == 1)
			return false;
		if(open[next[x][i]] == 0)
			e_count++;
				
	}	
	if(e_count > 2)
		return false;
	else
		return true;	
}

这题没有想出来。枚举量不是很大的时候(2^15),就直接应该试试枚举。

如何判断:1.剩余图没有环 2.剩余图连通分量个数 <= 去掉点+1 3.剩余图中所有点的度数均不大于2.





基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值