openCV学习(三)提取图像中的矩形区域

本文档介绍了如何使用Python版OpenCV库从图像中提取矩形区域。通过边缘检测、轮廓识别,找到最大面积的轮廓,并进一步获取其顶点进行投影变换。提供的代码示例可供学习参考。

改编自 https://segmentfault.com/a/1190000013925648 原文是c++版,我改成了python版,供大家参考学习。
主要思想:边缘检测—》轮廓检测—》找出最大的面积的轮廓—》找出顶点—》投影变换

import numpy as np
import cv2
# 这个成功的扣下了ppt白板
srcPic = cv2.imread('2345.jpg')
length=srcPic.shape[0]
depth=srcPic.shape[1]
polyPic = srcPic
shrinkedPic = srcPic
greyPic = cv2.cvtColor(shrinkedPic, cv2.COLOR_BGR2GRAY)
ret, binPic = cv2.threshold(greyPic, 130, 255, cv2.THRESH_BINARY)
print(binPic.shape)
median = cv2.medianBlur(binPic, 5)
# 进行边缘检测
cannyPic = cv2.Canny(median, 10, 200)

cv2.namedWindow("binary", 0)
cv2.namedWindow("binary2", 0)
cv2.imshow("binary", cannyPic)
# 找出轮廓
contours, hierarchy = cv2.findContours(cannyPic, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
cv2.imwrite('binary2.png', cannyPic)
cv2.imshow("binary2", cannyPic)
i = 0
maxArea = 0
# 挨个检查看那个轮廓面积最大
for i in range(len(contours)):
    if cv2.contourArea(contours[i]) > cv2.contourArea(contours[maxArea]):
   
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值