在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空”,那么天空飞翔的“鸟”就是模型可能收敛到的一个个最优解。在施加了模型正则化后,就好比将原假设空间(“天空”)缩小到一定的空间范围(“笼子”),这样一来,可能得到的最优解能搜索的假设空间也变得相对有限。有限空间自然对应复杂度不太高的模型,也自然对应了有限的模型表达能力。这就是“正则化有效防止模型过拟合的”一种直观解析。
L2正则化
在深度学习中,用的比较多的正则化技术是L2正则化,其形式是在原先的损失函数后边再加多一项:,那加上L2正则项的损失函数就可以表示为: