CodeForces - 1473B
Let’s define a multiplication operation between a string a and a positive integer x: a⋅x is the string that is a result of writing x copies of a one after another. For example, “abc” ⋅ 2 = “abcabc”, “a” ⋅ 5 = “aaaaa”.
A string a is divisible by another string b if there exists an integer x such that b⋅x=a. For example, “abababab” is divisible by “ab”, but is not divisible by “ababab” or “aa”.
LCM of two strings s and t (defined as LCM(s,t)) is the shortest non-empty string that is divisible by both s and t.
You are given two strings s and t. Find LCM(s,t) or report that it does not exist. It can be shown that if LCM(s,t) exists, it is unique.
Input
The first line contains one integer q (1≤q≤2000) — the number of test cases.
Each test case consists of two lines, containing strings s and t (1≤|s|,|t|≤20). Each character in each of these strings is either ‘a’ or ‘b’.
Output
For each test case, print LCM(s,t) if it exists; otherwise, print -1. It can be shown that if LCM(s,t) exists, it is unique.
Example
inputCopy
3
baba
ba
aa
aaa
aba
ab
outputCopy
baba
aaaaaa
-1
Note
In the first test case, “baba” = “baba” ⋅ 1 = “ba” ⋅ 2.
In the second test case, “aaaaaa” = “aa” ⋅ 3 = “aaa” ⋅ 2.
题意:给定两个只含“a","b"字母的字符串,找到两个字符串共同的最小公倍序列。
思路:事实上,当有一组字符串长度为奇数时(除了1),无论如何都找不到LCM(a,b)。如果细分的话情况很多,比较复杂,观察到题目所给字符串长度<=20。这样的话其实不必啰嗦,直接对两个字符串暴力填补至齐长再对比是否相同即可,也不必担忧填补后超过20,因为那样必定有一个字符串长度为奇数,是不合法的。
code
#include <bits/stdc++.h>
using namespace std;
#define inf 1e5+10
#define ll long long
const int gm=10010;
string s1,s2;
ll q;
int main()
{
cin>>q;
while (q--)
{
cin>>s1>>s2;
string temp1,temp2;
temp1=s1;//存下s1,s2初始值,为了之后填补
temp2=s2;
while (s1.size()!=s2.size())
{
if (s1.size()<s2.size())
s1+=temp1;//谁短补谁,最后总会相同
else if (s1.size()>s2.size())
s2+=temp2;
}
if (s1==s2)
cout<<s1<<endl;
else
{
cout<<-1<<endl;
}
}
system("pause");
return 0;
}
当然如果字符串长度增大,这个暴力算法就不适用了。
该博客讨论了一种特定的字符串处理问题,即寻找两个只包含'a'和'b'字符的字符串之间的最小公倍序列(LCM)。题目要求在不超过20个字符的情况下找到这两个字符串的LCM,如果存在则输出,否则输出-1。提供的解决方案通过比较两个字符串长度并填充较短的字符串以达到相同长度,然后检查是否相等来确定LCM。如果字符串长度增大,这种暴力方法可能不再适用。
250

被折叠的 条评论
为什么被折叠?



