Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m=obstacleGrid.size();
int n=obstacleGrid[0].size();
int d[111][111];
memset(d,0,sizeof(d));
if(!obstacleGrid[0][0]) d[0][0]=1;
for(int i=1;i<m;i++){
if(obstacleGrid[i][0]) d[i][0]=0;
else d[i][0]=d[i-1][0];
}
for(int i=1;i<n;i++){
if(obstacleGrid[0][i]) d[0][i]=0;
else d[0][i]=d[0][i-1];
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]) d[i][j]=0;
else d[i][j]=d[i-1][j]+d[i][j-1];
}
}
return d[m-1][n-1];
}
};