HDU 3861 The King’s Problem 强连通+最小路径覆盖

本文探讨了如何使用最小路径覆盖算法解决王国分治问题,即如何将一个由城市和方向道路组成的王国划分为最少数量的州,确保每个城市只属于一个州,并且所有城市间的路径在各自所属的州内可以互相到达。通过实例分析,展示了从输入到输出的完整过程,包括数据结构初始化、边添加、分治算法应用、路径覆盖计算等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The King’s Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1509    Accepted Submission(s): 542


Problem Description
In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v, but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state.  What’s more, for each pair of city (u, v), if there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state. And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which belongs to other state.
  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 

Input
The first line contains a single integer T, the number of test cases. And then followed T cases. 

The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
 

Output
The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
 

Sample Input
  
1 3 2 1 2 1 3
 

Sample Output
  
2
 

Source
 


强连通缩点,重新构图,最小路径覆盖=点数-最大匹配

最小路径覆盖不会求,还是参考的别人的,自己还得再学习思考下

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>

using namespace std;

#define PB push_back
#define MP make_pair
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define DWN(i,h,l) for(int i=(h);i>=(l);--i)
#define CLR(vis) memset(vis,0,sizeof(vis))
#define MST(vis,pos) memset(vis,pos,sizeof(vis))
#define MAX3(a,b,c) max(a,max(b,c))
#define MAX4(a,b,c,d) max(max(a,b),max(c,d))
#define MIN3(a,b,c) min(a,min(b,c))
#define MIN4(a,b,c,d) min(min(a,b),min(c,d))
#define PI acos(-1.0)
#define INF 0x7FFFFFFF
#define LINF 1000000000000000000LL
#define eps 1e-8

typedef long long ll;

const int maxn=100000+5;


struct node{
    int u,to,next;
}e[maxn];

vector<int> g[maxn];

int head[maxn],edge;

int id[maxn],q[maxn],dfn[maxn],low[maxn],num[maxn];

int match[maxn];

bool vis[maxn];

int n,m,tsp,qe,cnt;

void init()
{
    MST(head,-1);
    edge=0;
}

void addedge(int u,int v)
{
    e[edge].u=u;
    e[edge].to=v;
    e[edge].next=head[u];
    head[u]=edge++;
}

void tarjan(int u)
{
    int i,v;
    dfn[u]=low[q[qe++]=u]=++tsp;
    for(i=head[u];i>=0;i=e[i].next)
        if(!dfn[v=e[i].to])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else
        {
            if(id[v]<0)
            {
                low[u]=min(low[u],dfn[v]);
            }
        }
    if(low[u]==dfn[u])
    {
        num[id[u]=++cnt]=1;
        while((v=q[--qe])!=u)
            ++num[id[v]=cnt];
    }
}


void solve()
{
    int i;
    tsp=qe=cnt=0;
    for(i=0;i<=n;++i)
        id[i]=-1,dfn[i]=0;
    for(i=1;i<=n;++i)
        if(!dfn[i])
            tarjan(i);
}

int dfs(int x)
{
    vector<int>::iterator it=g[x].begin();
    for(;it!=g[x].end();it++)
    {
        int v=*it;
        if(!vis[v])
        {
            vis[v]=true;
            if(match[v]==-1||dfs(match[v]))
            {
                match[v]=x;
                return 1;
            }
        }
    }
    return 0;
}


int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int u,v;
        init();
        scanf("%d%d",&n,&m);
        REP(i,m)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
        }
        solve();
        FOR(i,0,n)
         g[i].clear();
        FOR(i,1,n)
        {
            for(int j=head[i];~j;j=e[j].next)
            {
                if(id[i]!=id[e[j].to])
                {
                    g[id[i]].PB(id[e[j].to]);
                }
            }
        }
        int ans=0;
        MST(match,-1);
        FOR(i,1,cnt)
        {
            //cout<<ans<<endl;
            MST(vis,false);
            ans+=dfs(i);
        }
        cout<<cnt-ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值