TensorFlow之分类学习
这次课程主要通过官方MNIST_data这个数据级做为例子.来训练并预测手写数字,最终得到识别的概率.
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
#if no have the data.this download the data.
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def add_layer(inputs, in_size, out_size, activation_function=None,):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b,)
return outputs
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
return result
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28,784pixel
ys = tf.placeholder(tf.float32, [None, 10])
# add output layer
#xs,input_szie,output_size,activation_function
prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)
# the error between prediction and real data
#this is the loss
# loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
# important step
sess.run(tf.global_variables_initializer())
for i in range(1000):
#100 by 100, study
batch_xs, batch_ys = mnist.train.next_batch(100)
#train data
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
if i % 50 == 0:
#data test
print(compute_accuracy(mnist.test.images, mnist.test.labels))
输出结果是:
RESTART: /Users/dongsai/Documents/MachineLearning/tensorflow/TensorFlow_Study/csdn/tf_lesson16.py
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
0.2002
0.6402
0.7428
0.7783
0.8043
0.8208
0.8303
0.8395
0.8464
0.8516
0.855
0.8594
0.8618
0.8655
0.8696
0.8678
0.8701
0.868
0.8766
0.8769
>>>
能看了最终的识别率可以到达87%.代码中有详细的注释.
--------------------------
关注微信公众号:玉麒麟百科
回复'tensorflow代码',即可获取系列教程源码.