【python】OpenCV—Scanner

在这里插入图片描述

1、需求描述

输入图片
在这里插入图片描述
扫描得到如下的结果
在这里插入图片描述

用OpenCV构建文档扫描仪只需三个简单步骤:

1.边缘检测
2.使用图像中的边缘来找到代表被扫描纸张的轮廓。
3.应用透视变换来获得文档的自顶向下视图。

2、代码实现

导入必要的包

from skimage.filters import threshold_local
import numpy as np
import argparse
import cv2
import imutils

初始化一个坐标列表,该列表中的第一个元素是左上,第二个元素是右上,第三个元素是右下,第四个元素是左下

该坐标排序方法有缺陷,具体可参考 【python】OpenCV—Coordinates Sorted Clockwise

def order_points(pts):
	rect = np.zeros((4, 2), dtype = "float32")
	# 左上角点的和最小,然而右下角的点的和最大
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]
	# 现在,计算点之间的差值,右上角的差值最小,而左下角的差值最大
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]
	# 返回有序坐标
	return rect


def four_point_transform(image, pts):
	# 获得点的一致顺序,并将它们分别拆封
	rect = order_points(pts)
	(tl, tr, br, bl) = rect
	# 计算新图像的宽度,这将是右下角和左下角x坐标或右上角和左上角x坐标之间的最大距离
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
	maxWidth = max(int(widthA), int(widthB))
	# 计算新图像的高度,这将是右上角和右下角y坐标或左上角和左下角y坐标之间的最大距离
	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
	maxHeight = max(int(heightA), int(heightB))
	# 现在我们有了新图像的维数,构建目标点集以获得图像的“鸟瞰视图”(即自顶向下视图),再次指定左上、右上、右下和左下顺序中的点
	dst = np.array([
		[0, 0],
		[maxWidth - 1, 0],
		[maxWidth - 1, maxHeight - 1],
		[0, maxHeight - 1]], dtype = "float32")
	# 计算透视变换矩阵,然后应用它
	M = cv2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值