卷积神经网络经典模型架构简介

【图书推荐】《PyTorch深度学习与企业级项目实战》-优快云博客

《PyTorch深度学习与企业级项目实战(人工智能技术丛书)》(宋立桓,宋立林)【摘要 书评 试读】- 京东图书 (jd.com)

ImageNet是一个包含超过1 500万幅手工标记的高分辨率图像的数据库,大约有22 000个类别。ImageNet 项目于2007年由斯坦福大学的华人教授李飞飞创办,目标是收集大量带有标注信息的图片数据供计算机视觉模型训练。ImageNet 拥有 1 500 万幅标注过的高清图片,总共拥有22 000类,其中约有100万幅标注了图片中主要物体的定位边框。

而ILSVRC(ImageNet Large-Scale Visual Recognition Challenge,ImageNet大规模视觉识别挑战赛)成立于2010年,旨在提高大规模目标检测和图像分类的最新技术,ILSVRC作为最具影响力的竞赛,促进了许多经典的卷积神经网络架构的发展,功不可没。ILSVRC使用的数据都来自 ImageNet。

从2010年开始举办的ILSVRC比赛使用ImageNet数据集的一个子集,大概拥有120万幅图片,以及1 000类标注。该比赛一般采用top-5和top-1分类错误率作为模型性能的评测指标。top1是指概率向量中最大的作为预测结果,若分类正确,则为正确;而top5只要概率向量中最大的前5名里有分类正确的,则为正确。

加拿大著名科学家Yann LeCun等人在1998年提出LeNet-5这个经典的卷积神经网络模型(用于手写数字的识别)是深度学习的奠基之作,而2012年的冠军AlexNet网络模型首次将深度学习技术应用到大规模图像分类领域,证明了深度学习技术学习到的特征可以超越手工设计的特征。如图4-14所示,ILSVRC比赛分类项目,2012年冠军AlexNet(top-5错误率为16.4%,8层神经网络)、2014年亚军VGG(top-5错误率为7.3%,19层神经网络)、2014年冠军GoogleNet(top-5错误率为6.7%,22层神经网络)、2015年的冠军ResNet(top-5错误率为3.57%,152层神经网络)。

图4-14

这些经典的卷积神经网络模型及其性能的提升,开启了计算机视觉领域中的深度学习热潮。下面,我们就从LeNet-5模型开始为大家一一介绍这些模型。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值