有两个数列A和B
已知A_0,a,b,N
A_n=A_(n-1)*a+b (n>=1)
B数列满足
B_n=2*B_(n/2) + 1 (n为偶数)
B_n=2*B_((n-1)/2) + (n+1)/2 (n为奇数)
现在问B数列的第A_N项和第(A_N)+1项的关系
T组数据
A_0,a,b,N<=1e15
T<=100
Input
一个数T,数据组数
每行四个数A_0,a,b,N
Output
一个字符,表示大小关系。
Input示例
1
0 5 5 1
Output示例
=
思路:
先将B数列的值打出来发现每四个以
'<','=','<','>'循环出现。第0个是特例等于第1个。
用矩阵快速幂的方式计算A_N的值。对于第0个需要特判。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MOD = 4;
ll a0, a, b, n;
int t;
struct Matrix
{
short int val[2][2];
};
Matrix multi(const Matrix &left, const Matrix &right)
{
Matrix result;
result.val[0][0] = (left.val[0][0] * right.val[0][0] + left.val[0][1] * right.val[1][0]) % MOD;
result.val[0][1] = (left.val[0][0] * right.val[0][1] + left.val[0][1] * right.val[1][1]) % MOD;
result.val[1][0] = (left.val[1][0] * right.val[0][0] + left.val[1][1] * right.val[1][0]) % MOD;
result.val[1][1] = (left.val[1][0] * right.val[0][1] + left.val[1][1] * right.val[1][1]) % MOD;
return result;
}
Matrix fast_pow(ll a0, ll n)
{
Matrix result;
result.val[0][0] = a0 % MOD;
result.val[0][1] = 1;
result.val[1][0] = 0;
result.val[1][1] = 0;
Matrix base;
base.val[0][0] = a % MOD;
base.val[0][1] = 0;
base.val[1][0] = b % MOD;
base.val[1][1] = 1;
while (n > 0)
{
if (n & 1)
{
result = multi(result, base);
}
n /= 2;
base = multi(base, base);
}
return result;
}
char s[4] = {'<','=','<','>'};
int main()
{
cin >> t;
for (int i = 0; i < t; i++)
{
cin >> a0 >> a >> b >> n;
if (b == 0)
{
if (a0 == 0 || a == 0)
{
cout << "=" << endl;
continue;
}
}
Matrix result = fast_pow(a0, n);
int index = result.val[0][0];
cout << s[index] << endl;
}
return 0;
}