分数拆分

本文介绍了如何通过编程解决数学问题,即找出所有满足1/k = 1/x + 1/y的正整数对(x, y),其中x >= y。通过给出的样例输入和输出,读者可以理解并实现相应的算法。

输入正整数k,找出所有的正整数x>=y,使得1/k=1/x + 1/y。

样例输入:

2

12

样例输出:

2

1/2=1/6+1/3

1/2=1/4+1/4


8

1/12=1/156+1/13

1/12=1/84+1/14

1/12=1/60+1/15

1/12=1/48+1/16

1/12=1/36+1/18

1/12=1/30+1/20

1/12=1/28+1/21


#include<iostream>

using namespace std;


void fun(int k)
{
for (int y = k+1; y <= 2*k; y++)
{
int a = k*y;
int b = y-k;
int x = a/b;
if (a%b == 0 && x >= y)
{
cout << "1/" << k << "=" << "1/" << x << "+" << "1/" << y << endl;
}
}
}


1/12=1/24+1/24

【激光质量检测】利用丝杆与步进电机的组合装置带动光源的移动,完成对光源使用切片法测量其光束质量的目的研究(Matlab代码实现)内容概要:本文研究了利用丝杆与步进电机的组合装置带动光源移动,结合切片法实现对激光光源光束质量的精确测量方法,并提供了基于Matlab的代码实现方案。该系统通过机械装置精确控制光源位置,采集不同截面的光强分布数据,进而分析光束的聚焦特性、发散角、光斑尺寸等关键质量参数,适用于高精度光学检测场景。研究重点在于硬件控制与图像处理算法的协同设计,实现了自动化、高重复性的光束质量评估流程。; 适合人群:具备一定光学基础知识和Matlab编程能力的科研人员或工程技术人员,尤其适合从事激光应用、光电检测、精密仪器开发等相关领域的研究生及研发工程师。; 使用场景及目标:①实现对连续或脉冲激光器输出光束的质量评估;②为激光加工、医疗激光、通信激光等应用场景提供可靠的光束分析手段;③通过Matlab仿真与实际控制对接,验证切片法测量方案的有效性与精度。; 阅读建议:建议读者结合机械控制原理与光学测量理论同步理解文档内容,重点关注步进电机控制逻辑与切片数据处理算法的衔接部分,实际应用时需校准装置并优化采样间距以提高测量精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值