Determining whether or not a polygon (2D) has its vertices ordered clockwise or counterclockwise

本文介绍了一种通过计算相邻边的交叉积来判断多边形顶点顺序(顺时针或逆时针)的方法。此方法不仅能用于确定多边形的形状(凸或凹),还能应用于复杂场景如多边形可能不干净(两点重合或两线段共线)。提供了一个示例程序和源代码,以帮助理解和实现这一概念。

The following describes a method for determining whether or not a polygon has its vertices ordered clockwise or anticlockwise. As a consequence the test can also be used to determine whether or not a polygon is concave or convex. A polygon will be assumed to be described by N vertices, ordered

(x 0,y 0), (x 1,y 1), (x 2,y 2), . . . (x n-1,y n-1)

A convenient definition of clockwise is based on considerations of the cross product between adjacent edges. If the crossproduct is positive then it rises above the plane (z axis up out of the plane) and if negative then the cross product is into the plane.

cross product = ((x i - x i-1),(y i - y i-1))  x ((x i+1 - x i),(y i+1 - y i))

= (xi - xi-1) * (yi+1 - yi) - (yi - yi-1) * (xi+1 - xi)

If the polygon is known to be convex then one only has to consider the cross product between any two adjacent edges. A positive cross product means we have a counterclockwise polygon. There are some tests that may need to be done if the polygons may not be "clean". In particular two vertices must not be coincident and two edges must not be colinear.

For the more general case where the polygons may be convex, it is necessary to consider the sign of the cross product between adjacent edges as one moves around the polygon. If there are more positive cross products then the overall polygon is ordered counterclockwise. There are pathological cases to consider here as well, all the edges cannot be colinear, there must be at least 3 vertices, the polygon must be simple, that is, it cannot intersect itself or have holes.


Test for concave/convex polygon

A similar argument to the above can be used to determine whether a polygon is concave or convex. For a convex polygon all the cross products of adjacent edges will be the same sign, a concave polygon will have a mixture of cross product signs.


Source Code

Example and test program  for testing whether a polygon is ordered clockwise or counterclockwise. For MICROSOFT WINDOWS, contributed by  G. Adam Stanislav .

C function by Paul Bourke

/*
   Return the clockwise status of a curve, clockwise or counterclockwise
   n vertices making up curve p
   return 0 for incomputables eg: colinear points
          CLOCKWISE == 1
          COUNTERCLOCKWISE == -1
   It is assumed that
   - the polygon is closed
   - the last point is not repeated.
   - the polygon is simple (does not intersect itself or have holes)
*/
int ClockWise(XY *p,int n)
{
   int i,j,k;
   int count = 0;
   double z;

   if (n < 3)
      return(0);

   for (i=0;i<n;i++) {
      j = (i + 1) % n;
      k = (i + 2) % n;
      z  = (p[j].x - p[i].x) * (p[k].y - p[j].y);
      z -= (p[j].y - p[i].y) * (p[k].x - p[j].x);
      if (z < 0)
         count--;
      else if (z > 0)
         count++;
   }
   if (count > 0)
      return(COUNTERCLOCKWISE);
   else if (count < 0)
      return(CLOCKWISE);
   else
      return(0);
}

Example and test program for testing whether a polygon is convex or concave. For MICROSOFT WINDOWS, contributed by G. Adam Stanislav.

/*
   Return whether a polygon in 2D is concave or convex
   return 0 for incomputables eg: colinear points
          CONVEX == 1
          CONCAVE == -1
   It is assumed that the polygon is simple
   (does not intersect itself or have holes)
*/
int Convex(XY *p,int n)
{
   int i,j,k;
   int flag = 0;
   double z;

   if (n < 3)
      return(0);

   for (i=0;i<n;i++) {
      j = (i + 1) % n;
      k = (i + 2) % n;
      z  = (p[j].x - p[i].x) * (p[k].y - p[j].y);
      z -= (p[j].y - p[i].y) * (p[k].x - p[j].x);
      if (z < 0)
         flag |= 1;
      else if (z > 0)
         flag |= 2;
      if (flag == 3)
         return(CONCAVE);
   }
   if (flag != 0)
      return(CONVEX);
   else
      return(0);
}

From:http://debian.fmi.uni-sofia.bg/~sergei/cgsr/docs/clockwise.htm

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值