tensorflow 中文文档学习
import tensorflow as tf
import numpy as np
x_data = np.float32(np.random.rand(2,100))
y_data = np.dot([0.1,0.2],x_data)+0.3
# construct liner_model 这里写中文会出错的(注释也不行) 如果写中文 加上utf-8
# 构建线性模型
b = tf.Variable(tf.zeros([1])) # tf.zeros(shape)
W = tf.Variable(tf.random_uniform([1,2],-1,1))
y = tf.matmul(W,x_data)+b
#定义损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
#定义优化函数
optimizer = tf.train.GradientDescentOptimizer(0.5)
#定义训练op
train = optimizer.minimize(loss)
# 初始化 一定要初始化!!!
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in xrange(0,201):
sess.run(train)
if step%20 == 0:
print step,sess.run(W),sess.run(b)
sess.close()
本文通过使用TensorFlow实现线性回归模型,演示了如何构建、训练并评估一个简单的线性模型。文中详细介绍了数据准备、模型搭建、损失函数定义、优化器选择以及训练过程。
1220

被折叠的 条评论
为什么被折叠?



