Understanding and Constructing Latent Modality Structures in Multi-Modal Representation Learning

本文提出了一种多模态表示学习框架,通过无监督对比学习学习解耦和模态不变的表示。该框架适用于视觉和文本数据,强调学习潜在模态结构的重要性,以改善图像描述、视觉问答等任务的性能。通过深度特征分离损失、布朗桥损失和几何一致性损失,模型在多种跨模态任务上展现出优越性能。

以下是可以作为分类标准的四个特征:

1. 数据模式。数据模式是指用于训练模型的数据类型。在本例中,数据可以是视觉、文本或视觉和语言。

  • 视觉:这意味着模型仅在图像上进行训练。模型学习以捕捉其视觉内容的方式表示图像。
  • 文本:这意味着模型仅在文本上进行训练。模型学习以捕捉其含义的方式表示文本。
  • 视觉和语言:这意味着模型在图像和文本上进行训练。模型学习以捕捉其含义及其相互关系的方式表示图像和文本。

2. 学习目标。学习目标是指训练

### Skeleton-Based Action Recognition Using Adaptive Cross-Form Learning In the realm of skeleton-based action recognition, adaptive cross-form learning represents a sophisticated approach that integrates multiple modalities to enhance performance. This method leverages both spatial and temporal information from skeletal data while adapting dynamically across different forms or representations. The core concept involves constructing an end-to-end trainable framework where features extracted from joint coordinates are transformed into various intermediate representations such as graphs or sequences[^1]. These diverse forms capture distinct aspects of human motion patterns effectively: - **Graph Representation**: Models interactions between joints by treating them as nodes connected via edges representing bones. - **Sequence Modeling**: Treats each frame's pose estimation results as elements within time-series data suitable for recurrent neural networks (RNN). Adaptive mechanisms allow seamless switching among these forms based on their suitability at different stages during training/inference processes. Specifically designed modules learn when and how much weight should be assigned to specific transformations ensuring optimal utilization of available cues without overfitting any single modality. For implementation purposes, one might consider employing Graph Convolutional Networks (GCNs) alongside Long Short-Term Memory units (LSTMs). GCNs excel in capturing structural dependencies present within graph structures derived from skeletons; meanwhile LSTMs handle sequential modeling tasks efficiently handling long-range dependencies found along video frames' timelines. ```python import torch.nn as nn class AdaptiveCrossFormModule(nn.Module): def __init__(self): super(AdaptiveCrossFormModule, self).__init__() # Define components responsible for processing individual form types here def forward(self, input_data): # Implement logic determining which transformation path(s) will process 'input_data' pass def train_model(model, dataset_loader): criterion = nn.CrossEntropyLoss() optimizer = ... # Initialize appropriate optimization algorithm for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in dataset_loader: outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值