Authors:
Mingzhe Hao, Levent Toksoz, and Nanqinqin Li, University of Chicago; Edward Edberg Halim, Surya University; Henry Hoffmann and Haryadi S. Gunawi, University of Chicago
Abstract:
This paper presents LinnOS, an operating system that leverages a light neural network for inferring SSD performance at a very fine — per-IO — granularity and helps parallel storage applications achieve performance predictability. LinnOS supports black-box devices and real production traces without requiring any extra input from users, while outperforming industrial mechanisms and other approaches. Our evaluation shows that, compared to hedging and
LinnOS是一款操作系统,通过轻量级神经网络预测SSD性能,以每IO为基础,提升并行存储应用的性能可预测性。它支持黑盒设备和真实生产跟踪,无需用户额外输入,且优于传统机制。评估显示,与保守策略和基于启发式的方法相比,LinnOS平均I/O延迟降低9.6-79.6%,预测准确率高达87-97%,每个I/O的推理开销仅4-6μs,证明了在操作系统中集成机器学习进行实时决策的可行性。
订阅专栏 解锁全文
805

被折叠的 条评论
为什么被折叠?



