一、时空知识图谱概述
时空知识图谱不单单是一个“增强型”的开放域知识图谱,而是需要结合业务场景和领域知识,并针对时空知识自身的特点,对知识的概念、实体和关系进行语义化和时空化拓展。时空知识图谱除了描述语义关系外,还需要考虑空间关系和时间关系的描述,如何建立时空关系和语义关系的映射,是时空知识图谱构建的关键问题。 知识图谱的构建遵循时空知识抽取、时空知识融合与关联、时空知识推理与计算、时空知识场景应用的基本流程。从海量结构化、半结构化和非结构化时空数据中进行实体、关系和属性的信息提取,通过实体对齐和指代消解实现对时空数据的知识融合并将知识存储到知识库中,最后进行进一步的知识推理、计算和图谱应用。
现有的知识图谱研究大多数都关注的是静态知识图谱,其中事实不会随着时间而变化,然而目前对知识图谱的时序动态变化的研究则较少。由于结构化的知识仅仅在特定的时间段内成立,所以时序信息是非常重要的,而事实的演化也会遵循一个时间序列。近期的研究开始将时序信息引入知识表征学习和知识图谱补全任务。为了与之前的静态知识图谱产生对比,我们将其称为”时序知识图谱“。
1)时序信息嵌入 在与时序有关的嵌入中,通过将三元组拓展成时序四元组 (h,r,t,τ) 来考虑时序信息。其中 τ 提供了关于事实何时成立的额外的时序信息。
2)实体动态 现实世界中的事件会改变实体的状态,并因此影响相应的关系。为了提升时间范围预测的性能,上下文时序剖面模型将时序范围预测形式化定义为了状态变化检测问题,利用上下文学习状态和状态变化向量。
3)时序关系依赖 在关系链中,沿着时间线存在时序依赖关系。例如,「在...出生 →从...毕业 → 在...工作 → 在...去世」。Jiang 等人提出了基于时间的嵌入,这是一种带有时序正则化的联合学习框架,从而引入时间顺序和一致性信息。
4)时序逻辑推理 研究人员还研究了时序推理的逻辑规则。Chekol 等人探究了在非确定性时序知识图谱上进行推理的马尔科夫逻辑网络和概率软逻辑。RLvLR-Stream 则考虑闭合时间路径规则,并从知识图谱流中学习规则的结构进行推理。
二、时空知识图谱应用
1.ArcGIS Knowledge
ArcGIS Knowledge 是企业知识图谱软件,允许用户探索和分析空间、非空间、非结构化和结构化数据,以提高决策制定速度。 ArcGIS Knowledge 旨在将分析师与所需数据源和受信任分析工具无缝连接,支持跨企业的协作式全数据源调查和信息共享。 分析人员可以通过地图、链接图表、直方图和实体卡片等多种视角将信息可视化,以解决空间和非空间问题。 ArcGIS Knowledge 是一种经济高效且灵活的方式,可将企业知识图谱分析添加到现有 ArcGIS