.apt_generated文件内报错

本文介绍了一个与AndroidAnnotations框架相关的错误,该错误导致工程出现红叉并无法通过clear命令解决。文章详细描述了解决过程,包括定位问题源文件及最终通过删除特定自动生成文件夹来修复问题。
部署运行你感兴趣的模型镜像

最近遇到一个问题被困饶好久,百度了好久也找不到相关的,最终被我意外解决了。

在svn更新代码后,各种错,一一化解,最后就是 这样:



只是工程有个红叉,clear也无效,报错的地方也不再工程中,由于用到AndroidAnnotations框架(博客中有转载不了解的小友可以去看下),那么具体是哪里出错呢,可一点点进去


很奇怪,//
// DO NOT EDIT THIS FILE, IT HAS BEEN GENERATED USING AndroidAnnotations.大概意思是无法编辑这个文件,因为是注解自动生成。这个自动生成的文件就在本地工程中


解决方案:删除.apt_generated文件,重新回到项目中,再clear一下,binngo问题解决了。


您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

运行后系统回复:Node.create_timer() got an unexpected keyword argument 'oneshot' #!/usr/bin/env python3 import rclpy from rclpy.node import Node from sensor_msgs.msg import Joy import simpleaudio as sa import time from collections import defaultdict, deque class JoyControlNode(Node): def __init__(self): super().__init__('joy_control_node') # 订阅手柄输入 self.subscription = self.create_subscription( Joy, '/joy', self.joy_callback, 10 ) # 音频播放管理 self.active_players = [] # 存储当前播放的音频对象 # 按键状态管理 self.key_history = defaultdict(lambda: deque(maxlen=2)) # 按键时序记录 self.active_combo = set() # 当前激活的组合键按键 self.combo_tracker = {} # 组合键检测状态 self.prev_buttons = None # 前一次按钮状态 # 时间阈值配置 (单位:秒) self.DETECTION_WINDOW = 1.5 # 按键检测窗口 self.DOUBLE_PRESS_THRESHOLD = 0.25 # 双击最大间隔 self.COMBO_WINDOW = 0.15 # 组合键检测时间窗 # 停止键定义 self.STOP_BUTTON = 7 # 33个指令的按键绑定配置 self.bindings = { # 单键绑定 0: "/path/FH.wav", 1: "/path/握手.wav", 2: "/path/挥手.wav", 3: "/path/FV.wav", 4: "/path/MU.wav", 5: "/path/MUH3.wav", 6: "/path/PH4X.wav", 8: "/path/企业介绍.wav", 9: "/path/转场.wav", # 双击绑定 (0,0): "/path/英文-FH.wav", (1,1): "/path/英文-握手.wav", (2,2): "/path/英文-挥手.wav", (3,3): "/path/英文-FV.wav", (4,4): "/path/英文-MU.wav", (5,5): "/path/英文-MUH3.wav", (6,6): "/path/英文-PH4X.wav", (8,8): "/path/英文-企业介绍.wav", (9,9): "/path/英文-转场.wav", # 组合键绑定 (4,0): "/path/PMC.wav", (4,1): "/path/S2H.wav", (4,2): "/path/SHXP.wav", (4,3): "/path/TCE.wav", (4,8): "/path/TH.wav", (4,9): "/path/XIO.wav", (6,0): "/path/英文-PMC.wav", (6,1): "/path/英文-S2H.wav", (6,2): "/path/英文-SHXP.wav", (6,3): "/path/英文-TCE.wav", (6,8): "/path/英文-TH.wav", (6,9): "/path/英文-XIO.wav", (5,1): "/path/英文-握手.wav", (5,2): "/path/英文-挥手.wav", } # 按键检测定时器 self.detection_timer = None self.last_key_time = 0 # 最后按键时间 def is_new_press(self, current_buttons, button_index): """检测按键是否刚刚按下(上升沿检测)""" if self.prev_buttons is None: return False if button_index >= len(current_buttons) or button_index >= len(self.prev_buttons): return False return current_buttons[button_index] == 1 and self.prev_buttons[button_index] == 0 def is_new_release(self, current_buttons, button_index): """检测按键是否刚刚释放(下降沿检测)""" if self.prev_buttons is None: return False if button_index >= len(current_buttons) or button_index >= len(self.prev_buttons): return False return current_buttons[button_index] == 0 and self.prev_buttons[button_index] == 1 def play_sound(self, file_path): """非阻塞播放音频文件""" try: # 清理已完成播放的音频 self.cleanup_players() wave_obj = sa.WaveObject.from_wave_file(file_path) play_obj = wave_obj.play() self.active_players.append(play_obj) self.get_logger().info(f"播放音频: {file_path}") except Exception as e: self.get_logger().error(f"播放失败: {e}") def stop_all_sounds(self): """停止所有音频播放""" for player in self.active_players: player.stop() self.active_players = [] self.get_logger().info("所有音频已停止") def cleanup_players(self): """清理已完成播放的音频线程""" self.active_players = [p for p in self.active_players if p.is_playing()] def reset_all_states(self): """重置所有按键状态""" self.key_history.clear() self.active_combo.clear() self.combo_tracker.clear() # 重置定时器 if self.detection_timer: self.detection_timer.cancel() self.detection_timer = None def start_detection_timer(self): """启动或重置检测定时器""" if self.detection_timer: self.detection_timer.cancel() # 创建一次性定时器 self.detection_timer = self.create_timer( self.DETECTION_WINDOW, self.detection_timeout, oneshot=True ) def detection_timeout(self): """检测窗口超时处理""" self.get_logger().info("检测窗口超时,处理按键事件") # 处理所有按键事件 self.process_key_events() # 重置状态 self.reset_all_states() self.detection_timer = None def process_key_events(self): """处理累积的按键事件""" # 1. 优先级2: 双击检测 for key, times in self.key_history.items(): if len(times) == 2: time_diff = times[1] - times[0] if time_diff < self.DOUBLE_PRESS_THRESHOLD: double_key = (key, key) if double_key in self.bindings: self.play_sound(self.bindings[double_key]) return # 高优先级触发,停止后续检测 # 2. 优先级3: 组合键检测 for combo in list(self.combo_tracker.keys()): if combo in self.bindings: self.play_sound(self.bindings[combo]) return # 组合键触发,停止后续检测 # 3. 优先级4: 单键检测 for key, times in self.key_history.items(): if key in self.bindings: self.play_sound(self.bindings[key]) return # 单键触发 def joy_callback(self, msg): current_time = time.time() buttons = msg.buttons # 初始化前次按钮状态 if self.prev_buttons is None: self.prev_buttons = [0] * len(buttons) # === 1. 最高优先级: 停止键处理 === if self.is_new_press(buttons, self.STOP_BUTTON): self.stop_all_sounds() self.reset_all_states() self.prev_buttons = buttons return # 检测按键事件 any_key_pressed = False # === 2. 组合键检测 === active_keys = [i for i, state in enumerate(buttons) if state == 1 and i != self.STOP_BUTTON] # 更新组合键状态 for combo in [k for k in self.bindings if isinstance(k, tuple) and len(k) == 2]: if all(buttons[k] == 1 for k in combo): if combo not in self.combo_tracker: self.combo_tracker[combo] = current_time self.active_combo.update(combo) any_key_pressed = True else: if combo in self.combo_tracker: del self.combo_tracker[combo] self.active_combo.difference_update(combo) # === 3. 单键/双击检测 === for key in range(len(buttons)): if key == self.STOP_BUTTON or key in self.active_combo: continue # 按键按下事件检测 if self.is_new_press(buttons, key): self.key_history[key].append(current_time) any_key_pressed = True # 启动检测定时器 if any_key_pressed: self.start_detection_timer() self.last_key_time = current_time # 更新按钮状态 self.prev_buttons = buttons self.cleanup_players() def main(args=None): rclpy.init(args=args) node = JoyControlNode() rclpy.spin(node) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
最新发布
09-19
import os import torch import transformers from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, DataCollatorForLanguageModeling, BitsAndBytesConfig, Trainer ) from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from datasets import load_dataset import logging import psutil import gc from datetime import datetime # === 配置区域 === MODEL_NAME = "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/models/Yi-6B" DATASET_PATH = "./data/train_lora_formatted.jsonl" OUTPUT_DIR = "./yi6b-lora-optimized" DEVICE_MAP = "auto" # 使用自动设备映射 # 确保输出目录存在 os.makedirs(OUTPUT_DIR, exist_ok=True) # === 内存优化配置 === os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # 减少内存碎片 torch.backends.cuda.cufft_plan_cache.clear() # 清理CUDA缓存 # === 增强的日志系统 === def setup_logging(output_dir): """配置日志系统,支持文件和TensorBoard""" logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 文件日志处理器 file_handler = logging.FileHandler(os.path.join(output_dir, "training.log")) file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(file_handler) # 控制台日志处理器 console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger.addHandler(console_handler) # TensorBoard日志目录 tensorboard_log_dir = os.path.join(output_dir, "logs", datetime.now().strftime("%Y%m%d-%H%M%S")) os.makedirs(tensorboard_log_dir, exist_ok=True) # 安装TensorBoard回调 tb_writer = None try: from torch.utils.tensorboard import SummaryWriter tb_writer = SummaryWriter(log_dir=tensorboard_log_dir) logger.info(f"TensorBoard日志目录: {tensorboard_log_dir}") except ImportError: logger.warning("TensorBoard未安装,可视化功能不可用") return logger, tb_writer logger, tb_writer = setup_logging(OUTPUT_DIR) # === 量化配置 - 使用更高效的配置 === quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) # === 加载模型 === logger.info("加载预训练模型...") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=DEVICE_MAP, quantization_config=quant_config, torch_dtype=torch.bfloat16, trust_remote_code=True, attn_implementation="flash_attention_2" # 使用FlashAttention优化内存 ) # === 分词器处理 === logger.info("加载分词器...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) tokenizer.padding_side = "right" if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id # === 准备模型训练 === model = prepare_model_for_kbit_training( model, use_gradient_checkpointing=True # 启用梯度检查点以节省内存 ) # === LoRA 配置 - 优化内存使用 === logger.info("配置LoRA...") lora_config = LoraConfig( r=64, # 降低rank以减少内存使用 lora_alpha=32, # 降低alpha值 target_modules=["q_proj", "v_proj"], # 减少目标模块 lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, lora_config) # 记录可训练参数 trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) total_params = sum(p.numel() for p in model.parameters()) logger.info(f"可训练参数: {trainable_params:,} / 总参数: {total_params:,} ({trainable_params/total_params:.2%})") # === 加载并预处理数据集 === logger.info("加载和预处理数据集...") dataset = load_dataset("json", data_files=DATASET_PATH, split="train") # 文本过滤函数 def is_valid_text(example): text = example.get("text", "") return text is not None and len(text.strip()) > 200 # 增加最小长度要求 dataset = dataset.filter(is_valid_text) logger.info(f"过滤后数据集大小: {len(dataset)} 条") # 动态填充的分词函数 - 节省内存 def tokenize_function(examples): tokenized = tokenizer( examples["text"], padding=True, # 使用动态填充 truncation=True, max_length=1024, # 降低上下文长度以减少内存使用 ) # 创建 labels - 因果语言建模需要 labels = input_ids tokenized["labels"] = tokenized["input_ids"].copy() return tokenized tokenized_dataset = dataset.map( tokenize_function, batched=True, remove_columns=["text"], batch_size=64, # 降低批处理大小以减少内存峰值 num_proc=4, # 减少进程数以降低内存开销 ) # === 数据整理器 === data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False # 因果语言建模 ) # === 训练参数 - 优化内存使用 === report_to_list = ["tensorboard"] if tb_writer else [] training_args = TrainingArguments( output_dir=OUTPUT_DIR, per_device_train_batch_size=4, # 大幅降低批次大小 gradient_accumulation_steps=4, # 增加梯度累积步数以保持有效批次大小 learning_rate=2e-5, num_train_epochs=3, logging_steps=50, save_strategy="steps", save_steps=500, bf16=True, optim="paged_adamw_32bit", report_to=report_to_list, warmup_ratio=0.05, gradient_checkpointing=True, # 启用梯度检查点 fp16=False, max_grad_norm=0.3, # 降低梯度裁剪阈值 remove_unused_columns=True, # 移除未使用的列以节省内存 dataloader_num_workers=4, # 减少数据加载工作线程 evaluation_strategy="steps", eval_steps=500, save_total_limit=2, # 减少保存的检查点数量 logging_dir=os.path.join(OUTPUT_DIR, "logs"), load_best_model_at_end=True, ddp_find_unused_parameters=False, logging_first_step=True, group_by_length=True, lr_scheduler_type="cosine", weight_decay=0.01, ) # === GPU监控工具 === def monitor_gpu(): """监控GPU使用情况""" if torch.cuda.is_available(): device = torch.device("cuda") mem_alloc = torch.cuda.memory_allocated(device) / 1024**3 mem_reserved = torch.cuda.memory_reserved(device) / 1024**3 mem_total = torch.cuda.get_device_properties(device).total_memory / 1024**3 return { "allocated": f"{mem_alloc:.2f} GB", "reserved": f"{mem_reserved:.2f} GB", "total": f"{mem_total:.2f} GB", "utilization": f"{mem_alloc/mem_total*100:.1f}%" } return {} # === 创建训练器 === eval_dataset = None if len(tokenized_dataset) > 100: eval_dataset = tokenized_dataset.select(range(100)) trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=tokenized_dataset, eval_dataset=eval_dataset, data_collator=data_collator, ) # === 训练前验证 === def validate_data_and_model(): """验证数据和模型是否准备好训练""" logger.info("\n=== 训练前验证 ===") # 检查样本格式 sample = tokenized_dataset[0] logger.info(f"样本键: {list(sample.keys())}") logger.info(f"input_ids 长度: {len(sample['input_ids'])}") # 创建单个样本测试批次 test_batch = data_collator([sample]) # 移动数据到设备 test_batch = {k: v.to(model.device) for k, v in test_batch.items()} # 前向传播测试 model.train() outputs = model(**test_batch) loss_value = outputs.loss.item() logger.info(f"测试批次损失: {loss_value:.4f}") # 记录到TensorBoard if tb_writer: tb_writer.add_scalar("debug/test_loss", loss_value, 0) # 反向传播测试 outputs.loss.backward() logger.info("反向传播成功!") # 重置梯度 model.zero_grad() logger.info("验证完成,准备开始训练\n") # 记录初始GPU使用情况 gpu_status = monitor_gpu() logger.info(f"初始GPU状态: {gpu_status}") # 记录到TensorBoard if tb_writer: tb_writer.add_text("system/initial_gpu", str(gpu_status), 0) validate_data_and_model() # === 自定义回调 - 监控资源使用 === class ResourceMonitorCallback(transformers.TrainerCallback): def __init__(self, tb_writer=None): self.tb_writer = tb_writer self.start_time = datetime.now() self.last_log_time = datetime.now() def on_step_end(self, args, state, control, **kwargs): current_time = datetime.now() time_diff = (current_time - self.last_log_time).total_seconds() # 每分钟记录一次资源使用情况 if time_diff > 60: self.last_log_time = current_time # GPU监控 gpu_status = monitor_gpu() logger.info(f"Step {state.global_step} - GPU状态: {gpu_status}") # CPU和内存监控 cpu_percent = psutil.cpu_percent() mem = psutil.virtual_memory() logger.info(f"CPU使用率: {cpu_percent}%, 内存使用: {mem.used/1024**3:.2f}GB/{mem.total/1024**3:.2f}GB") # 记录到TensorBoard if self.tb_writer: # GPU显存使用 if torch.cuda.is_available(): device = torch.device("cuda") mem_alloc = torch.cuda.memory_allocated(device) / 1024**3 self.tb_writer.add_scalar("system/gpu_mem", mem_alloc, state.global_step) # CPU使用率 self.tb_writer.add_scalar("system/cpu_usage", cpu_percent, state.global_step) # 系统内存使用 self.tb_writer.add_scalar("system/ram_usage", mem.used/1024**3, state.global_step) def on_log(self, args, state, control, logs=None, **kwargs): """记录训练指标到TensorBoard""" if self.tb_writer and logs is not None: for metric_name, metric_value in logs.items(): if "loss" in metric_name or "lr" in metric_name or "grad_norm" in metric_name: self.tb_writer.add_scalar(f"train/{metric_name}", metric_value, state.global_step) def on_train_end(self, args, state, control, **kwargs): """训练结束时记录总时间""" training_time = datetime.now() - self.start_time logger.info(f"训练总时间: {training_time}") if self.tb_writer: self.tb_writer.add_text("system/total_time", str(training_time)) # 添加回调 trainer.add_callback(ResourceMonitorCallback(tb_writer=tb_writer)) # === 内存清理函数 === def clear_memory(): """清理内存和GPU缓存""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() logger.info("内存清理完成") # === 启动训练 === try: logger.info("开始训练...") # 分阶段训练以减少内存峰值 num_samples = len(tokenized_dataset) chunk_size = 1000 # 每次处理1000个样本 for i in range(0, num_samples, chunk_size): end_idx = min(i + chunk_size, num_samples) logger.info(f"训练样本 {i} 到 {end_idx-1} / {num_samples}") # 创建子数据集 chunk_dataset = tokenized_dataset.select(range(i, end_idx)) # 更新训练器 trainer.train_dataset = chunk_dataset # 训练当前块 trainer.train() # 清理内存 clear_memory() # 保存训练指标 metrics = trainer.evaluate() trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) # 保存最佳模型 trainer.save_model(OUTPUT_DIR) tokenizer.save_pretrained(OUTPUT_DIR) logger.info(f"训练完成! 模型保存在: {OUTPUT_DIR}") # 记录最终指标到TensorBoard if tb_writer: for metric_name, metric_value in metrics.items(): tb_writer.add_scalar(f"final/{metric_name}", metric_value) tb_writer.close() except Exception as e: logger.error(f"训练出错: {e}") import traceback logger.error(traceback.format_exc()) # 尝试更小批量训练 logger.info("\n尝试更小批量训练...") small_dataset = tokenized_dataset.select(range(50)) trainer.train_dataset = small_dataset trainer.train() # 保存模型 trainer.save_model(f"{OUTPUT_DIR}_small") tokenizer.save_pretrained(f"{OUTPUT_DIR}_small") logger.info(f"小批量训练完成! 模型保存在: {OUTPUT_DIR}_small") # 记录错误到TensorBoard if tb_writer: tb_writer.add_text("error/exception", traceback.format_exc()) # 清理内存 clear_memory() # === 训练后验证 === def validate_final_model(): """验证训练后的模型""" logger.info("\n=== 训练后验证 ===") # 加载保存的模型 from peft import PeftModel # 仅加载基础模型配置 base_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=DEVICE_MAP, quantization_config=quant_config, torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_4bit=True ) # 加载LoRA适配器 peft_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR) # 合并LoRA权重 merged_model = peft_model.merge_and_unload() # 测试生成 prompt = "中国的首都是" inputs = tokenizer(prompt, return_tensors="pt").to(merged_model.device) outputs = merged_model.generate( **inputs, max_new_tokens=50, # 减少生成长度 temperature=0.7, top_p=0.9, repetition_penalty=1.2, do_sample=True ) generated = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"提示: {prompt}") logger.info(f"生成结果: {generated}") # 记录到TensorBoard if tb_writer: tb_writer.add_text("validation/sample", f"提示: {prompt}\n生成: {generated}") # 更全面的测试 test_prompts = [ "人工智能的未来发展趋势是", "如何学习深度学习?", "写一个关于太空探索的短故事:" ] for i, test_prompt in enumerate(test_prompts): inputs = tokenizer(test_prompt, return_tensors="pt").to(merged_model.device) outputs = merged_model.generate( **inputs, max_new_tokens=100, # 减少生成长度 temperature=0.7, top_p=0.9, repetition_penalty=1.2, do_sample=True ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"\n提示: {test_prompt}\n生成: {generated_text}\n{'='*50}") # 记录到TensorBoard if tb_writer: tb_writer.add_text(f"validation/test_{i}", f"提示: {test_prompt}\n生成: {generated_text}") logger.info("验证完成") # 执行验证 validate_final_model() # 关闭TensorBoard写入器 if tb_writer: tb_writer.close() logger.info("TensorBoard日志已关闭") (.venv) (base) vipuser@ubuntu22:~/ai_writer_project_final_with_fixed_output_ui$ python train_lora.py 2025-07-13 22:10:19,098 - INFO - TensorBoard日志目录: ./yi6b-lora-optimized/logs/20250713-221019 2025-07-13 22:10:19,099 - INFO - 加载预训练模型... Traceback (most recent call last): File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/train_lora.py", line 77, in <module> model = AutoModelForCausalLM.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py", line 566, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 3590, in from_pretrained config = cls._autoset_attn_implementation( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 1389, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 1480, in _check_and_enable_flash_attn_2 raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}") ImportError: FlashAttention2 has been toggled on, but it cannot be used due to the following error: the package flash_attn seems to be not installed. Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2.
07-14
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值