CAN309 Information Theory and Data Communications Assessment 2Matlab

Java Python CAN309

Information Theory and Data Communications

Assessment 2

Assessment Number

2

Contribution to Overall Marks

10%

Submission Deadline

15th Dec., 2024, Sunday, Week 13 (23:59)

Assessment Objective

This assessment aims at evaluating students’ understanding and problem solving skills in Channel Coding, Cryptography, Transceiver Design and Data Communications Networking, which are accumulated during lectures, tutorials and after-class study.

Submission Procedure

Please submit the electronic copy on Learning Mall Online.

Marking Scheme

The specific marks assigned are shown on the right column of each question and sub-question. The assessment of Exercise 3 and Exercise 6 includes MATLAB implementation. Please include your MATLAB code script in the context of the report (NOT as a separate .m file) for Exercise 3. The assessment of Exercise 6 is in the form of a short report. It should include:

a)   A   short  analysis  of  the  questions  and  the   equations   used  in  deriving  your results/codes.

b)   Results and plots (if needed).

c)    Discussion and conclusion.

The assignment covering the 6 Exercises should be submitted as a single report in PDF format and  named as ‘Student ID_GivenName_Surname.pdf’. The designed  MATLAB  codes in  .m format for Exercise 6 should beenclosed together with the report as the separate file(s).

Please compress your report and MATLAB codes as a single .zip file and named as ‘Student ID_GivenName_Surname.zip’ for the submission.

EXERCISE 1 - (15 POINTS)

Repetition code achieves error correction by repeating the transmitted information bits r additional times. If the transmitted information is 1 bit and the number of the redundant binary bits r = 6, answer the following questions:

i)    Construct the repetition codeword set. (2 points)

ii)   What is the minimum Hamming distancedmin of the code? (2 points)

iii)  How many errors in a block can the code a) detect, b) correct, and c) detect and correct

at the sametime? (4 points)

iv)  Given a noisy channel with symbol error probability of p, p = 0.01, calculate the bit

error rate (BER) with this repetition code. (7 points)

EXERCISE 2 - (15 POINTS)

Consider a public-key Rivest–Shamir–Adleman (RSA) system. Given two prime numbers 43 and 71, derive

i)     A valid public key for the RSA algorithm. (5 points)

ii)    The corresponding private key for the RSA algorithm. (10 points)

EXERCISE 3 - (15 POINTS)

For the received pulse pr(t),let pr (0) = 1, pr (T) =  −0.3,  pr (2T) = 0.1,   pr (3T)& CAN309 Information Theory and Data Communications Assessment 2Matlab nbsp;= −0.07,  pr (4T) = 0.02,  pr (−T) = −0.2,  pr (−2T) = 0.05,  pr (−3T) =   −0.01,

pr (−4T) = 0.005. Design a 5-tap (N=2) Zero-forcing (ZF) equaliserand keep the     calculation accurate to the fourth decimal place. Please provide the matrix inverse calculation procedure with TWO methods:

a) manual calculation with Gauss elimination or determinant method (See Appendix A), and b) with MATLAB.

* Hint: For manual calculation, you may skip some of the calculation steps and keep the key steps in your final answer.

EXERCISE 4 - (15 POINTS)

i)    Describe the forms of data units for the 5-layer TCP/IP model. (9 points)

ii)   Given the following IP source and destination addresses (in Hexadecimal format) which are identified in the IP Header (as specified in Appendix B):

IP source address: 81 7E 7B 01

IP destination address: 81 7E 7B 24,

convert the addresses to standard dotted-decimal format. (6 points)

EXERCISE 5 - (20 POINTS)

Identify protocols involved in email communication and interpret the procedure.

* Hint: Use block diagrams or flowcharts as necessary for better clarity. (20 points)

EXERCISE 6 - Open Ended Question (20 POINTS)

The theorems and principles in Channel Coding and Cryptography could be quite mathematical and difficult to comprehend. Using MATLAB to visualize specific theorems, concepts and properties helps to strengthen our understanding on the challenging part   of the knowledge. Please select ONE theorem/concept that was introduced in Channel Coding and Cryptography, and design the MATLAB code to visualize the related formulation/properties.

Note: The MATLAB codes in .m format should be typeset properly and be included together with Assignment 2 (in PDF) as a single compressed document for submission.

Quick Guidance on the Open Ended Question:

The solution should be in the form. of a short report covering the following three sections; the section marks are given below.

Section 1: A description of the theorem or concept with formulation. (5 points)

Section 2: MATLAB codes and Graphs to visualize the theorem/concept. (10 points) Section 3: Detailed comments and discussion. (5 points)

Appendix A: Matrix Inverse Calculation

1.   Gauss elimination method

Let A bean × n matrix, the inverse of A, if it exists, can be computed, by row reduction via the following steps:

Step 1: Then × n identity matrix is augmented to the right of A, forming an × 2n block matrix [A  | I].

Step 2: Through application of elementary row operations, find the reduced echelon form of this n × 2n matrix, [I  | B].

Step 3: There is BA = I, and therefore, B = A −1 which is the inverse matrix of A.

Note: The matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this case the right block of the final matrix is A−1 .

2.   The determinant method

Given a square matrix A, the inverse of A can be calculated via the following steps:

Step 1:  Find determinant of A, |A|.

If |A| = 0, A−1 does not exist.

If |A| ≠ 0,  one can proceed to find the inverse of the matrix.

Step 2: Replace each element of A by its cofactor.

Step 3: Transpose the result to form. the adjoint matrix, adj(A)         

【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值