PyTorch 深度学习实践 第2讲

该文章已生成可运行项目,

 第2讲  linear_model 源代码

B站 刘二大人 ,传送门 PyTorch深度学习实践——线性模型

代码说明:1、函数forward()中,有一个变量w。这个变量最终的值是从for循环中传入的。

                  2、for循环中,使用了np.arange。若对numpy不太熟悉,传送门Numpy数据计算从入门到实战

                 3、python中zip()函数的用法

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]


def forward(x):
    return x*w


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y)**2


# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
    print("w=", w)
    l_sum = 0
    for x_val, y_val in zip(x_data, y_data):
        y_pred_val = forward(x_val)
        loss_val = loss(x_val, y_val)
        l_sum += loss_val
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', l_sum/3)
    w_list.append(w)
    mse_list.append(l_sum/3)
    
plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()    

本节课最后留的作业:

传送门 第二讲--线性模型(作业)

本文章已经生成可运行项目
评论 26
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值