使用GpT2模型探索NebulaGraph:Langchain-Chatchat项目2.1

在官方例子中给出了通过chain = NebulaGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True)来检索NebulaGraph图数据库。本文介绍了通过GPT2替换ChatOpenAI的思路和实现,暂时不考虑效果。之所以没用ChatGLM2是因为加载模型太慢,调试不方便,不过将GPT2替换为ChatGLM2也很方便。

一.通过ChatOpenAI来检索NebulaGraph1.NebulaGraph_OpenAI.py代码实现  如果没有ChatGPT的key和proxy是没法运行的,如下所示:

2.NebulaGraphQAChain默认prompt  基本思路是介绍、举例、图Schema和限制,如下所示:

二.通过GPT2来检索NebulaGraph1.NebulaGraph_GPT2.py代码实现  使用自定义的GPT2()替换ChatOpenAI(temperature=0)即可,如下所示:

2.GPT2.py代码实现  主要是继承LLM类,并且实现def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:函数,如下所示:

3.GPT2_Flask.py代码实现  主要是通过Flask将GPT2进行API封装,如下所示:

因为通用LLM通过prompt将text转换为nGQL并不专业,觉得以后的发展思路应该还是专用LLM作为agent来做这个事情。

参考文献:[1]https://huggingface.co/gpt2[2]使用LLMs模块接入自定义大模型:https://blog.youkuaiyun.com/zhaomengsen/article/details/130585397[3]https://github.com/ai408/Langchain-Chatchat/blob/master/examples/NebulaGraph_GPT2.py[4]https://github.com/ai408/Langchain-Chatchat/blob/master/examples/GPT2.py[5]https://github.com/ai408/Langchain-Chatchat/blob/master/examples/GPT2_Flask.py

基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值