坐标系定义和相互转换算法

坐标系定义
  • WGS84坐标系:即地球坐标系,国际上通用的坐标系。Earth
  • GCJ02坐标系:即火星坐标系,WGS84坐标系经加密后的坐标系。Mars
  • BD09坐标系:即百度坐标系,GCJ02坐标系经加密后的坐标系。 Bd09
常见的api 返回的坐标系
  • 百度地图api返回的是百度坐标(BD09)
  • 高德,阿里云地图api 返回的都是火星坐标(常用)
  • 腾讯搜搜地图API 火星坐标
  • 灵图51ditu地图API 火星坐标(不常用)
坐标系转换算法
  • 基本参数

    private static double PI = Math.PI; // 圆周率
    private static double AXIS = 6378245.0;  //轴
    private static double OFFSET = 0.00669342162296594323;  //偏移量 (a^2 - b^2)
    private static double X_PI = PI * 3000.0 / 180.0;
    
  • GCJ-02=>BD09 火星坐标系=>百度坐标系

        public static double[] gcj2BD09(double glat, double glon) {
            double x = glon;
            double y = glat;
            double[] latlon = new double[2];
            double z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * X_PI);
            double theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * X_PI);
            latlon[0] = z * Math.sin(theta) + 0.006;
            latlon[1] = z * Math.cos(theta) + 0.0065;
            return latlon;
        }
    
  • BD09=>GCJ-02 百度坐标系=>火星坐标系

     public static double[] bd092GCJ(double glat, double glon) {
            double x = glon - 0.0065;
            double y = glat - 0.006;
            double[] latlon = new double[2];
            double z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * X_PI);
            double theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * X_PI);
            latlon[0] = z * Math.sin(theta);
            latlon[1] = z * Math.cos(theta);
            return latlon;
        }
    
  • BD09=>WGS84 百度坐标系=>地球坐标系

     public static double[] bd092WGS(double glat, double glon) {
            double[] latlon = bd092GCJ(glat, glon);
            return gcj2WGS(latlon[0], latlon[1]);
        }
    
  • WGS84=>BD09 地球坐标系=>百度坐标系

     public static double[] wgs2BD09(double wgLat, double wgLon) {
            double[] latlon = wgs2GCJ(wgLat, wgLon);
            return gcj2BD09(latlon[0], latlon[1]);
        }
    
  • WGS84=>GCJ02 地球坐标系=>火星坐标系

    public static double[] wgs2GCJ(double wgLat, double wgLon) {
            double[] latlon = new double[2];
            if (outOfChina(wgLat, wgLon)) {
                latlon[0] = wgLat;
                latlon[1] = wgLon;
                return latlon;
            }
            double[] deltaD = delta(wgLat, wgLon);
            latlon[0] = wgLat + deltaD[0];
            latlon[1] = wgLon + deltaD[1];
            return latlon;
        }
    
  • GCJ02=>WGS84 火星坐标系=>地球坐标系(粗略)

      public static double[] gcj2WGS(double glat, double glon) {
            double[] latlon = new double[2];
            if (outOfChina(glat, glon)) {
                latlon[0] = glat;
                latlon[1] = glon;
                return latlon;
            }
            double[] deltaD = delta(glat, glon);
            latlon[0] = glat - deltaD[0];
            latlon[1] = glon - deltaD[1];
            return latlon;
        }
    
  • GCJ02=>WGS84 火星坐标系=>地球坐标系(精确)

     public static double[] gcj2WGSExactly(double gcjLat, double gcjLon) {
            double initDelta = 0.01;
            double threshold = 0.000000001;
            double dLat = initDelta, dLon = initDelta;
            double mLat = gcjLat - dLat, mLon = gcjLon - dLon;
            double pLat = gcjLat + dLat, pLon = gcjLon + dLon;
            double wgsLat, wgsLon, i = 0;
            while (true) {
                wgsLat = (mLat + pLat) / 2;
                wgsLon = (mLon + pLon) / 2;
                double[] tmp = wgs2GCJ(wgsLat, wgsLon);
                dLat = tmp[0] - gcjLat;
                dLon = tmp[1] - gcjLon;
                if ((Math.abs(dLat) < threshold) && (Math.abs(dLon) < threshold))
                    break;
    
                if (dLat > 0) pLat = wgsLat;
                else mLat = wgsLat;
                if (dLon > 0) pLon = wgsLon;
                else mLon = wgsLon;
    
                if (++i > 10000) break;
            }
            double[] latlon = new double[2];
            latlon[0] = wgsLat;
            latlon[1] = wgsLon;
            return latlon;
        }
    
  • 两点之间距离

     public static double distance(double latA, double logA, double latB, double logB) {
            int earthR = 6371000;
            double x = Math.cos(latA * Math.PI / 180) * Math.cos(latB * Math.PI / 180) * Math.cos((logA - logB) * Math.PI / 180);
            double y = Math.sin(latA * Math.PI / 180) * Math.sin(latB * Math.PI / 180);
            double s = x + y;
            if (s > 1)
                s = 1;
            if (s < -1)
                s = -1;
            double alpha = Math.acos(s);
            double distance = alpha * earthR;
            return distance;
        }
    
        public static double[] delta(double wgLat, double wgLon) {
            double[] latlng = new double[2];
            double dLat = transformLat(wgLon - 105.0, wgLat - 35.0);
            double dLon = transformLon(wgLon - 105.0, wgLat - 35.0);
            double radLat = wgLat / 180.0 * PI;
            double magic = Math.sin(radLat);
            magic = 1 - OFFSET * magic * magic;
            double sqrtMagic = Math.sqrt(magic);
            dLat = (dLat * 180.0) / ((AXIS * (1 - OFFSET)) / (magic * sqrtMagic) * PI);
            dLon = (dLon * 180.0) / (AXIS / sqrtMagic * Math.cos(radLat) * PI);
            latlng[0] = dLat;
            latlng[1] = dLon;
            return latlng;
        }
    
        public static boolean outOfChina(double lat, double lon) {
            if (lon < 72.004 || lon > 137.8347)
                return true;
            if (lat < 0.8293 || lat > 55.8271)
                return true;
            return false;
        }
    
        public static double transformLat(double x, double y) {
            double ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x));
            ret += (20.0 * Math.sin(6.0 * x * PI) + 20.0 * Math.sin(2.0 * x * PI)) * 2.0 / 3.0;
            ret += (20.0 * Math.sin(y * PI) + 40.0 * Math.sin(y / 3.0 * PI)) * 2.0 / 3.0;
            ret += (160.0 * Math.sin(y / 12.0 * PI) + 320 * Math.sin(y * PI / 30.0)) * 2.0 / 3.0;
            return ret;
        }
    
        public static double transformLon(double x, double y) {
            double ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x));
            ret += (20.0 * Math.sin(6.0 * x * PI) + 20.0 * Math.sin(2.0 * x * PI)) * 2.0 / 3.0;
            ret += (20.0 * Math.sin(x * PI) + 40.0 * Math.sin(x / 3.0 * PI)) * 2.0 / 3.0;
            ret += (150.0 * Math.sin(x / 12.0 * PI) + 300.0 * Math.sin(x / 30.0 * PI)) * 2.0 / 3.0;
            return ret;
        }
    
坐标加密算法

通常情况下,我们通过高德定位拿到的坐标不能直接使用,需要做一定的转换之后才能与地图服务坐标(argic)匹配,才能使用一些地图服务的操作,否则坐标对不上,地图服务引擎获取到的数据都不对的。一般我们使用以下四种(标准转标准、四参数、七参数、高斯正算)的其中一种。

  • 高德定位方法回调后,我们拿到对应的坐标进行加密处理

      public void onLocationChanged(AMapLocation aMapLocation){
            if (aMapLocation == null)
                return;
            GpsWgs gpsWgs = getLocation(aMapLocation);
         
        }
    
  • 标准转标准

    主要参数:
    //目标坐标系()
      private int targetSpatialReference = 2437;
    //使用方式 (4326是WGS84 参考坐标系)
    point = (Point) GeometryEngine.project(new Point(Lon, Lat)
                                , SpatialReference.create(4326)
                                , SpatialReference.create(targetSpatialReference));
    
  • 四参数

    //主要的参数 
    //坐标系
        private SpatialReference spatialReference;
    
        //四参数
        private double k;
    
        private double red;
    
        private double dx;
    
        private double dy;
    
        //x偏移量
        private double offsetX;
    
        //y偏移量
        private double offsetY;
      //方法调用  
     public Point FourParamConfigLocation(GpsWgs gpsWgs){
            Point mapPoint;
           // double[] xy1 = GaosiTool.GaussPositive_Du(gpsWgs.getWgLat(),gpsWgs.getWgLon(), mFourParamConfig.getCentralMeridian());
           double dx = mFourParamConfig.getDx();
           double dy = mFourParamConfig.getDy();
           double red = mFourParamConfig.getRed();
          double k = mFourParamConfig.getK();
           double x_put = xy1[0];
          double y_put = xy1[1];
           double x_out = x_put * k * Math.cos(red / 180 * Math.PI) - y_put * k * Math.sin(red / 180 * Math.PI) + dx;
           double y_out = x_put * k * Math.sin(red / 180 * Math.PI) + y_put * k * Math.cos(red / 180 * Math.PI) + dy;
          mapPoint=new Point(x_out,y_out);
           mapPoint=movePoints(mapPoint);//如果发现位子不准,可以微调坐标进行校准
           Log.e("point","X坐标:" + x_out + "\n" + "Y坐标:" + y_out);
            mapPoint = this.transfer(xy1[0], xy1[1], this.mFourParamConfig.getK(), this.mFourParamConfig.getRed(), this.mFourParamConfig.getDx(), this.mFourParamConfig.getDy());
            return mapPoint;
        }
    
  • 七参数

    // 七参数主要参数
    	protected double XT = 0.0;
    	protected double YT = 0.0;
    	protected double ZT = 0.0;
    	protected double XR = 0.0;
    	protected double YR = 0.0;
    	protected double ZR = 0.0;
    	protected double K = 0.0;
    		// 长轴,短轴,扁率
    	protected double _a = 0.0;
    	protected double _b = 0.0;
    	protected double _f = 0.0;
    	protected double _e = 0.0;
    	// 带宽
    	protected double _beltWidth = 0.0;
    
    	//主要实现方法coordChangeTool
    	 public double[] coordChangeTool(double L, double B, double H) {
            //初始化数组
            double[] xy = new double[2];
            //获取84经纬度和高度
            this.B_put = B;
            this.L_put = L;
            this.H_put = H;
            //用七参数配置进行赋值
            this.middleline = _iConversion.MERIDIAN;
            this.zonewide = (int) _iConversion._beltWidth;
            this.Px = _iConversion.XT;
            this.Py = _iConversion.YT;
            this.Pz = _iConversion.ZT;
            this.Rx = _iConversion.XR;
            this.Ry = _iConversion.YR;
            this.Rz = _iConversion.ZR;
            this.K = _iConversion.K;
            _a = _iConversion._a;
            _b = _iConversion._b;
            _f = (1 /_iConversion._e);
            double _e = 1 / _f;
            //计算参数
            //计算椭球第一偏心率
            e_84 = 2 * f_84 - f_84 * f_84; //(a*a-b*b)/(a*a)
            //计算参考椭球的第一偏心率-e
            e1_54 = 2 * _f - _f * _f;
            //计算参考椭球的第二偏心率-e'
            e2_54 = Math.pow(Math.sqrt(Math.pow(_a, 2) - Math.pow(_b, 2)) / _b, 2);
            // 计算第一偏心率的平方
            ee = (2 * _e - 1) / _e / _e;
            // 计算第二偏心率的平方
            ee2 = ee / (1 - ee);
    
            //84转54
            BLH_84To_XYZ_84(B_put, L_put, H_put);
            XYZ_84To_XYZ_54(X_84, Y_84, Z_84);
            XYZ_54_BLH_54(X_54, Y_54, Z_54);
    
            //54转80
            //设置高斯椭球参数为西安80椭球参数
    //        SevenGaosiTool.xian_80();
            SevenGaosiTool.getReset(_a,ee,0);
            //按制定中央经线进行高斯投影
            SevenGaosiTool.GaussPositive_Du(B_54,L_54,middleline);
    
            //最终结果坐标
            xy[0] = SevenGaosiTool.getYy();
            xy[1] = SevenGaosiTool.getXx();
    
            return xy;
        }
    
    
  • 高斯正算

     高斯正算主要参数 
     //中央经线
        private double centralMeridian = 120;
        //椭球参数(高斯正算使用)
        static double LongHalfShaft = 6378137;
        static double firstEccentricitySquared = 0.006694380022900787;
        //使用方式
        GaosiTool.setA(LongHalfShaft);
                        GaosiTool.setE2(firstEccentricitySquared);
                        double[] xy1 = GaosiTool.GaussPositive_Du(Lat, Lon, centralMeridian);
                        point = new Point(xy1[1], xy1[0]);
                        
       // 主要核心算法
       public static double[] GaussPositive_Du(double B, double L, double L0)
        {
            double[] xy = new double[2];
            reset();
            double X, t, N, h2, l, m;
            double Bdu, Ldu;
            Bdu =B;
            Ldu =L;
            B = Bdu * PI / 180.0;
            L = Ldu * PI / 180.0;
            l = L - L0 * PI / 180;
            X = a0 * B - Math.sin(B) * Math.cos(B) * ((a2 - a4 + a6) + (2 * a4 - 16.0 / 3.0 * a6) * Math.sin(B) * Math.sin(B) + 16.0 / 3.0 * a6 * Math.pow(Math.sin(B), 4)) + a8 / 8.0 * Math.sin(8 * B);
            t = Math.tan(B);
            h2 = e2 / (1 - e2) * Math.cos(B) * Math.cos(B);
            N = a / Math.sqrt(1 - e2 * Math.sin(B) * Math.sin(B));
            m = Math.cos(B) * l;
            xx = X + N * t * ((0.5 + (1.0 / 24.0 * (5 - t * t + 9 * h2 + 4 * h2 * h2) + 1.0 / 720.0 * (61 - 58 * t * t + Math.pow(t, 4)) * m * m) * m * m) * m * m);
            yy = N * ((1 + (1.0 / 6.0 * (1 - t * t + h2) + 1.0 / 120.0 * (5 - 18 * t * t + Math.pow(t, 4) + 14 * h2 - 58 * h2 * t * t) * m * m) * m * m) * m);
            yy = yy + 500000;
            xy[0]=xx;
            xy[1]=yy;
            return xy;
        }
    
    参考坐标系WKID查询

    查询网站

    当你需要用到一个标准坐标系,但是不知道他的编号时从这里找,常用的:4326是84,4490是国家2000,4549是平面的国家2000中央经线120度的,2437是北京54中央经线120度的,2385是西安80中央经线120度的,3857是墨卡托投影的84坐标系(在线高德地图和在线百度地图) 就可以使用上面的网址查询。

public void Polygon_Trans4(IFeatureClass pFeatureCls, string strPath, string strFilename, ProgressBar pBar) { if (pFeatureCls == null || strPath == "" || strFilename == "") return; createNewShape(strPath, strFilename, pFeatureCls); IFeatureCursor pFeatCursor = pFeatureCls.Search(null, false); IFeature pFeature = pFeatCursor.NextFeature(); //打开目标图层 IWorkspaceFactory pWSF = new ShapefileWorkspaceFactoryClass(); IWorkspace pWS = pWSF.OpenFromFile(strPath, 0); IFeatureWorkspace pFWS = (IFeatureWorkspace)pWS; IFeatureClass pTargetFClass = pFWS.OpenFeatureClass(strFilename); IWorkspaceEdit pWSEdit = pWS as IWorkspaceEdit; pWSEdit.StartEditOperation(); pWSEdit.StartEditing(false); ITable pTble = (ITable)pFeatureCls; int lCunt = pTble.RowCount(null); pBar.Visible = true; pBar.Minimum = 0; pBar.Maximum = lCunt; pBar.Step = 1; IFeature pNewFeature; IPolygon pOutPolygon; IGeometryCollection pOutGeos; IPolygon pInPolygon; IGeometryCollection pInGeos; IPoint pOutPnt = new PointClass(); IPointCollection pOutPnts; while (pFeature != null) { pBar.PerformStep(); pNewFeature = pTargetFClass.CreateFeature(); pOutPolygon = new PolygonClass(); pOutGeos = pOutPolygon as IGeometryCollection; //获取原图形 pInPolygon = pFeature.Shape as IPolygon; pInGeos = pInPolygon as IGeometryCollection; for (int m = 0; m < pInGeos.GeometryCount; m++) { IGeometry pInGeo = pInGeos.get_Geometry(m); IPointCollection pInPnts = pInGeo as IPointCollection; pOutPnts = new PolygonClass(); object missing = Type.Missing; for (int n = 0; n < pInPnts.PointCount; n++) { IPoint pInPnt = pInPnts.get_Point(n); //转换点坐标 pOutPnt.X = ClsParas4.m_OffY + pInPnt.Y * ClsParas4.m_vb + pInPnt.X * ClsParas4.m_va; pOutPnt.Y = ClsParas4.m_OffX + pInPnt.Y * ClsParas4.m_va - pInPnt.X * ClsParas4.m_vb; pOutPnts.AddPoint(pOutPnt, ref missing, ref missing); } ISegmentCollection pSegmentCols = new RingClass(); pSegmentCols.AddSegmentCollection(pOutPnts as ISegmentCollection); pOutGeos.AddGeometry(pSegmentCols as IGeometry, ref missing, ref missing); } for (int i = 0; i < pFeature.Fields.FieldCount; i++) { if (pNewFeature.Fields.get_Field(i).Name.ToString().Equals("FID", StringComparison.CurrentCultureIgnoreCase) || pNewFeature.Fields.get_Field(i).Name.ToString().Equals("SHAPE", StringComparison.CurrentCultureIgnoreCase)) continue; pNewFeature.set_Value(i, pFeature.get_Value(i)); } pNewFeature.Shape = pOutPolygon as IGeometry; pNewFeature.Store(); pFeature = pFeatCursor.NextFeature(); } pBar.Visible = false; pWSEdit.StopEditOperation(); pWSEdit.StopEditing(true); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值