notebook关于启动代码出现炸内核的解决方法
在安装配置pycharm的后,运行import torch as t 就出现了炸内核的情况,后来知道是因为安装notebook的时候多点了一个东西,导致内核便空。后来我重新安装了notebook,配置了pytorch环境,但是还是出现

以下是原代码:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
Hyper Parameters
input_size = 1
output_size = 1
num_epochs = 1000
learning_rate = 0.001
x_train = np.array([[2.3], [4.4], [3.7], [6.1], [7.3], [2.1],[5.6], [7.7], [7.7], [4.1],
[6.7], [6.1], [7.5], [2.1], [7.2],
[5.6], [5.7], [7.7], [3.1]], dtype=np.float32)
#xtrain生成矩阵数据
y_train = np.array([[2.7], [4.76], [4.1], [7.1], [7.6], [3.5],[5.4], [7.6], [7.9], [5.3],
[7.3], [7.5], [7.5], [3.2], [7.7],
[6.4], [6.6], [7.9], [4.9]], dtype=np.float32)
plt.figure()
#画图散点图
plt.scatter(x_train,y_train)
plt.xlabel(‘x_train’)
#x轴名称
plt.ylabel(‘y_train’)
#y轴名称
#显示图片
plt.show()
#Linear Regression Model
class LinearRegression(nn.Module):
def init(self, input_size, output_size):
super(LinearRegression, self).init()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
out = self.linear(x)
return out
model = LinearRegression(input_size, output_size)
Loss and Optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
#Train the Model
for epoch in range(num_epochs):
# Convert numpy array to torch Variable
inputs = Variable(torch.from_numpy(x_train))
targets = Variable(torch.from_numpy(y_train))
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if (epoch+1) % 50 == 0:
print ('Epoch [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, loss.item()))
Plot the graph
model.eval()
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
plt.plot(x_train, y_train, ‘ro’)
plt.plot(x_train, predicted, label=‘predict’)
plt.legend()
plt.show()
执行这个代码会出现炸内核的情况,后来发现是因为是由于在每次打开jupyter notebook后没有实际上关掉,所以占据了大量的内存
只要执行:
import os
os.environ[“KMP_DUPLICATE_LIB_OK”] = “TRUE”
就可以了
最终代码如下:

在配置PyCharm并使用PyTorch时遇到notebook炸内核的问题,原因是安装过程中的某个错误。通过重新安装notebook和配置环境仍无法解决。问题最终发现是由于未正确关闭Jupyter notebook导致内存占用过高。解决方法是在代码开头添加`import os; os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"`。
12万+

被折叠的 条评论
为什么被折叠?



