LeetCode70 爬楼梯

文章讲述了如何用递归和循环两种方法解决爬楼梯问题,介绍了Java代码实现,并讨论了递归优化以减少超时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 题目
    假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
    
    每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

  2. 示例
    示例 1:
    
    输入:n = 2
    输出:2
    解释:有两种方法可以爬到楼顶。
    1. 1 阶 + 1 阶
    2. 2 阶
    示例 2:
    
    输入:n = 3
    输出:3
    解释:有三种方法可以爬到楼顶。
    1. 1 阶 + 1 阶 + 1 阶
    2. 1 阶 + 2 阶
    3. 2 阶 + 1 阶

  3. 解题思路
    1. 方法一:递归。
      1. n阶,如果第一次跳一阶,那么剩余的跳阶次数就是f(n - 1) 。如果第一次跳两阶,那么剩余的跳阶次数就是f(n - 2)。那么结果就是 f(n-1) + f(n - 2)。
      2. 这里 n=1,n=2时,结果分别为1和1.那么这两种情况就是递归的终止情况。
      3. 循环体就是f(n)=f(n-1) + f(n-2)
      4. 这里注意一个方法要再递归两次。容易超时。这里可以做一个优化,f(n) = f(n - 1) + f(n - 2),那么在计算f(n-2)的时候,f(n-1)及之前的都已经计算过了,没必要再计算一遍。可以使用额外内存空间,记录已经算过的值。减少递归次数。
    2. 方法二:循环。
      n = 1, res = 1
      n = 2, res = 2
      n = 3, res = 3
      n = 4, res = 5
      n = 5, res = 8
      ...
      f(n) = f(n - 1) + f(n - 2)
      1. 按照规律,可以看出,f(n) = f(n - 1) + f(n - 2)。即,当前项结果,就是前两项之和。
  4. 代码(Java)
    // 方法一
    class Solution {
        Map<Integer, Integer> tempRes = new HashMap<>();
        public int climbStairs(int n) {
            if (n < 3) {
                return n;
            }
            if (tempRes.containsKey(n)) {
                return tempRes.get(n);
            }
            int x = climbStairs(n - 1) + climbStairs(n - 2);
            tempRes.put(n, x);
            return x;
        }
    }
     // 方法二
    class Solution {
        public int climbStairs(int n) {
            int a = 0;
            int b = 0;
            int c = 1;
            for (int i = 0; i < n; i++) {
                a = b;
                b = c;
                c = a + b;
            }
            return c;
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值