思路:简单直接,从第一个字符开始,查找以该字符为起点的回文,返回所有回文中最长的那个回文
代码:
class Solution {
public:
string longestPalindrome(string s) {
string result= "";
string temp;
for (int i = 0; i < s.length(); ++i)
{
temp = palindromeFromeI(s, i);
if (temp.length() > result.length())
result = temp;
}
return result;
}
string palindromeFromeI(const string& str, int position)
{
int maxPosition;
int traceEnd;
int traceFront;
for (maxPosition = str.length() - 1; maxPosition >= position; --maxPosition)
{
traceEnd = maxPosition;
traceFront = position;
while (str[traceFront] == str[traceEnd])
{
++traceFront;
--traceEnd;
if (traceEnd <= traceFront)
return string(str, position, maxPosition - position + 1);
}
}
}
};
复杂度分析:此方法复杂度和暴力法一样(把所有可能的起点和终点列出来,逐一判断是否是回文),复杂度为o(n^3).计算过程:n*n/2 + (n-1)*(n-1)/2…… = (n^3 - 2n - 4n -…… + n) /2= o(n^3/4) = o(n^3).
改进:中间扩展思想,从回文 中间向两边扩展,直至找到最长的回文。改进后,复杂度为o(n^2)下图为参考答案中的代码:
public String longestPalindrome(String s) {
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}