Bill Say

比尔·盖茨为即将步入社会的高中和大学毕业生提供了11条实用建议,强调了现实世界的挑战与学校教育之间的差异。这些建议涵盖了从个人责任、工作态度到职场竞争等多个方面。

In Bill Gates Book for high school and college graduates, there is a list of 11 things they did not learn in school. In his book, Bill Gates talks about how feelgood, politically-correct teachings created a full generation of kids with no concept of reality and how this education set them up for failure in the real world.

在比尔-盖茨写给高中毕业生和大学毕业生的书里,有一个单子上面列有11项学生没能在学校里学到的事情。比尔-盖茨在书中谈到让你感觉良好的政治上正确的教导培养出一整代不知现实为何物的年轻人,这种教育只能导致他们成为现实世界中的失败者。

The 11 things are:

这11项事情是:

Life is not fair, get used to it.

生活是不公平的;要去适应它。

The world wont care about your self-esteem. The world will expect you to accomplish something before you feel good about yourself.

这世界并不会在意你的自尊。这世界指望你在自我感觉良好之前先要有所成就。

You will not make 40 thousand dollars a year right out of high school. You wont be a vice president with a car phone, until you earn both.

高中刚毕业你不会一年挣4万美元。你不会成为一个公司的副总裁,并拥有一部装有电话的汽车,直到你将此职位和汽车电话都挣到手。

If you think your teacher is tough, wait till you get a boss. He doesnt have tenure.

如果你认为你的老师严厉,等你有了老板再这样想。老板可是没有任期限制的。

Flipping burgers is not beneath your dignity. Your grandparents had a different word for burger flipping; they called it opportunity.

烙牛肉饼并不有损你的尊严。你的祖父母对烙牛肉饼可有不同的定义;他们称它为机遇。

If you mess up, its not your parents fault, so dont whine about our mistakes, learn from them.

如果你陷入困境,那不是你父母的过错,所以不要尖声抱怨我们的错误,要从中吸取教训。

Before you were born, your parents werent as boring as they are now. They got that way from paying your bills, cleaning your clothes and listening to you talk about how cool you are. So before you save the rain forest from the parasites of your parents generation, try delousing the closet in your own room.

在你出生之前,你的父母并非像他们现在这样乏味。他们变成今天这个样子是因为这些年来他们一直在为你付账单,给你洗衣服,听你大谈你是如何的酷。所以,如果你想消灭你父母那一辈中的寄生虫来拯救雨林的话,还是先去清除你房间衣柜里的虫子吧。

Your school may have done away with winners and losers, but life has not. In some schools they have abolished failing grades; theyll give you as many times as you want to get the right answer. This doesnt bear the slightest resemblance to anything in real life.

你的学校也许已经不再分优等生和劣等生,但生活却仍在作出类似区分。在某些学校已经废除不及格分;只要你想找到正确答案,学校就会给你无数的机会。这和现实生活中的任何事情没有一点相似之处。

Life is not divided into semesters. You dont get summers off and very few employers are interested in helping you find yourself. Do that on your own time.

生活不分学期。你并没有暑假可以休息,也没有几位雇主乐于帮你发现自我。自己找时间做吧。

Television is NOT real life. In real life people actually have to leave the coffee shop and go to jobs.

电视并不是真实的生活。在现实生活中,人们实际上得离开咖啡屋去干自己的工作。

Be nice to nerds. Chances are youll end up working for one.

善待乏味的人。有可能到头来你会为一个乏味的人工作。
 

如果只针对 **文字对答** 的英语口语练习(如AI模拟餐厅点餐对话),我们可以通过 **对话流程设计、NLP文本分析、评分算法** 来实现学习和评分功能。以下是具体实现方案: --- ## **1. 对话流程设计(餐厅点餐场景)** 设定一个 **多轮对话树**,覆盖核心交互节点,例如: ### **标准对话流程(AI引导用户完成)** 1. **Greeting(问候)** - AI: "Welcome to our restaurant! Do you have a reservation?" - 用户需回答: "Yes, under [Name]." / "No, I don't." 2. **Ordering Food(点餐)** - AI: "What would you like to order?" - 用户需包含: **菜品名称 + 定制需求**(如 "I'd like a steak, medium-rare, with mashed potatoes.") 3. **Asking Follow-ups(细节询问)** - AI随机插入问题,如: - "Would you like any drinks with that?" - "Do you prefer spicy or mild?" - 用户需合理回应(如 "I'll have a Coke, please.") 4. **Paying the Bill(结账)** - AI: "How would you like to pay?" - 用户需回答: "By credit card." / "Can I split the bill?" 5. **Ending(结束)** - AI: "Thank you! Enjoy your meal!" - 用户需礼貌回应(如 "Thanks! Goodbye.") --- ## **2. 如何判定用户“学习完成”?** ✅ **必须满足以下条件**: 1. **完成核心对话流程**(至少完成 **Greeting + Ordering + Paying**)。 2. **正确使用关键句型**(如 "I'd like...", "Can I have...?")。 3. **词汇覆盖度**:至少使用 **5个场景词汇**(如 menu, steak, bill, tip, dessert)。 ❌ **未完成的情况**: - 用户中途退出或跳过关键步骤。 - 回答完全无关(如输入 "I love basketball")。 --- ## **3. 评分算法(基于文本分析)** 采用 **规则 + NLP关键词匹配 + 语法检测** 计算得分(满分100分): ### **(1)基础分(50分)** - **流程完整性**(20分):是否完成所有核心步骤(Greeting→Ordering→Paying)。 - **关键词命中**(15分):检测是否使用 **关键句型**("I'd like...")和 **词汇**("steak", "bill")。 - **基本语法正确**(15分):用NLP库(如spaCy)检测明显错误(如 "I wants" → 扣分)。 ### **(2)进阶分(30分)** - **灵活应答**(10分):能否回答AI随机插入的问题(如 "Do you need a takeout box?")。 - **多样性**(10分):是否使用不同表达(如 "Can I get...?" vs. "I'd like...")。 - **礼貌用语**(10分):检测 "please", "thank you" 等。 ### **(3)错误扣分(20分)** - **无关回答**(每次-5分):如用户突然说 "What's the weather today?" - **严重语法错误**(每次-2分):如 "Me want burger." - **词汇错误**(每次-1分):如混淆 "dessert"(甜点)和 "desert"(沙漠)。 --- ## **4. 技术实现(关键代码逻辑)** ### **(1)对话流程管理** ```python # 用状态机(State Machine)管理对话流程 dialogue_states = { "greeting": {"next_states": ["ordering"]}, "ordering": {"next_states": ["follow_up", "paying"]}, "paying": {"next_states": ["end"]} } current_state = "greeting" user_must_say = ["reservation", "like to order"] # 检测关键词 ``` ### **(2)NLP文本分析(示例)** ```python import spacy nlp = spacy.load("en_core_web_sm") def analyze_text(user_input): doc = nlp(user_input) # 检测关键词 keywords = ["steak", "menu", "bill"] found_keywords = [token.text for token in doc if token.text in keywords] # 检测语法错误(如主谓一致) grammar_errors = check_grammar(doc) # 自定义规则或调用语法检查API return { "keywords": found_keywords, "grammar_errors": grammar_errors } ``` ### **(3)评分计算** ```python def calculate_score(user_responses): score = 0 # 1. 流程完整性 if all(stage in user_responses for stage in ["greeting", "ordering", "paying"]): score += 20 # 2. 关键词命中 if any("I'd like" in response for response in user_responses): score += 10 # 3. 语法检测扣分 score -= len(grammar_errors) * 2 return max(0, score) # 确保不低于0分 ``` --- ## **5. 用户反馈设计** 练习结束后,App显示: - **总分**(如 "85/100") - **具体反馈**: - ✅ "You used polite phrases well!" - ❌ "Try practicing: 'I'd like...' instead of 'I want...'." - **错误高亮**: - "You said: 'Me want burger' → Correct: 'I'd like a burger.'" --- ## **6. 扩展优化** - **动态难度**:根据用户水平调整AI提问复杂度(如新手问简单问题,高阶用户问 "How would you like your steak cooked?")。 - **错题本**:记录用户常犯错误,后续练习重点强化。 这样,即使没有语音,也能通过 **结构化对话 + NLP文本分析** 实现有效的口语练习和评分。使用java怎么实现
最新发布
06-25
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值