Description
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Sample Output
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
有个结论:以k进制求n!结果的位数为logk(n!)+1,因为计算机只能进行以e,10,也有2为底的阶乘,所以计算前要用换底公式处理一下,这个以前都学过logk(n!)=log(n!)/log(k)其中等号后面都是默认以e为底的。要节省时间先打表预处理一下。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 1e6+10;
double a[N];
int main() {
int T,p=0;
scanf("%d",&T);
for(int i=1; i<=N; i++) {
a[i]=a[i-1]+log(i);
}
while(T--) {
int n,base;
double ans;
scanf("%d%d",&n,&base);
if(n==0)
printf("Case %d: 1\n",++p);
else {
ans=a[n]/log(base)+1;
printf("Case %d: %d\n",++p,(int)ans);
}
}
return 0;
}

本文介绍了一种高效算法,用于计算整数n的阶乘在特定进制k下的位数。通过预先计算和存储中间结果,该算法能够在短时间内得出答案,适用于解决诸如竞赛编程中涉及的大数问题。
uDebug
1038

被折叠的 条评论
为什么被折叠?



