【codeforces】Non-square Equation(数学推导)

本文介绍了一种解决特定形式方程x² + s(x) * x - n = 0的方法,其中s(x)为x的各位数字之和。通过预先估计x的范围,并遍历可能的s(x)值来寻找最小正整数解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

time limit per test
 1 second
memory limit per test
 256 megabytes
input
 standard input
output
 standard output

Let's consider equation:

x2 + s(xx - n = 0, 

where x, n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.

You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.

Input

A single line contains integer n (1 ≤ n ≤ 1018) — the equation parameter.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cincout streams or the%I64d specifier.

Output

Print -1, if the equation doesn't have integer positive roots. Otherwise print such smallest integer x (x > 0), that the equation given in the statement holds.

Sample test(s)
input
2
output
1
input
110
output
10
input
4
output
-1
Note

In the first test case x = 1 is the minimum root. As s(1) = 1 and 12 + 1·1 - 2 = 0.

In the second test case x = 10 is the minimum root. As s(10) = 1 + 0 = 1 and 102 + 1·10 - 110 = 0.

In the third test case the equation has no roots.


本题用二分是不行的,因为y=x+s(x)*x并不是单调递增的。

我们看直接暴力肯定会超时的。所以要看怎么优化,这就需要用到一些数学知识了。看下面这组公式:


我们估算x不会超过10^9,所以s(x)不会超过81;

由上述公式我们就可以对s(x)的值遍历一遍,求出相应的x,再检验此x值是否符合所给公式。从而避免了直接对x遍历超时的情况

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 10000000000
using namespace std;
typedef long long LL;
LL solve(LL x){
	LL t=0;
	while(x){
		t=t+x%10;
		x=x/10;
	}
	return t;
}
int main(){
	LL n;
	while(scanf("%lld",&n)!=EOF){
		LL ans=MAXN;
		for(int i=1;i<=81;i++){
			LL x=sqrt(i*i/4+n)-i/2;
			LL s=solve(x);
			if(x*x+x*s-n==0){
				ans=min(ans,x);
				break;
			}
		}
		if(ans!=MAXN)
			printf("%lld\n",ans);
		else
			printf("-1\n");
	}
	return 0;
} 




### Codeforces Problem 976C Solution in Python For solving problem 976C on Codeforces using Python, efficiency becomes a critical factor due to strict time limits aimed at distinguishing between efficient and less efficient solutions[^1]. Given these constraints, it is advisable to focus on optimizing algorithms and choosing appropriate data structures. The provided code snippet offers insight into handling string manipulation problems efficiently by customizing comparison logic for sorting elements based on specific criteria[^2]. However, for addressing problem 976C specifically, which involves determining the winner ('A' or 'B') based on frequency counts within given inputs, one can adapt similar principles of optimization but tailored towards counting occurrences directly as shown below: ```python from collections import Counter def determine_winner(): for _ in range(int(input())): count_map = Counter(input().strip()) result = "A" if count_map['A'] > count_map['B'] else "B" print(result) determine_winner() ``` This approach leverages `Counter` from Python’s built-in `collections` module to quickly tally up instances of 'A' versus 'B'. By iterating over multiple test cases through a loop defined by user input, this method ensures that comparisons are made accurately while maintaining performance standards required under tight computational resources[^3]. To further enhance execution speed when working with Python, consider submitting codes via platforms like PyPy instead of traditional interpreters whenever possible since they offer better runtime efficiencies especially important during competitive programming contests where milliseconds matter significantly.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值