Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
Given
[5, 7, 7, 8, 8, 10] and target value 8,return
[3, 4]Code:
public class Solution {
public int[] searchRange(int[] A, int target) {
int i = 0;
int j = A.length - 1;
int index = getIndex(A, target);
int[] indexes = new int[2];
if (index == -1) {
indexes[0] = -1;
indexes[1] = -1;
return indexes;
} else {
indexes[0] = getLowerIndex(A, target, index);
indexes[1] = getUpperIndex(A, target, index);
}
return indexes;
}
public int getUpperIndex(int[] A, int target, int startPosition) {
int start = A.length - 1;
while (!(startPosition == A.length - 1 || A[startPosition + 1] != target)) {
int mid = (int) ((start + startPosition) / 2);
if (A[mid] == target) {
if (startPosition == mid) {
startPosition = mid + 1;
} else {
startPosition = mid;
}
} else {
start = mid - 1;
}
}
return startPosition;
}
public int getLowerIndex(int[] A, int target, int startPosition) {
int start = 0;
while (!(startPosition == 0 || A[startPosition - 1] != target)) {
int mid = (int) ((start + startPosition) / 2);
if (A[mid] == target) {
startPosition = mid;
} else {
start = mid + 1;
}
}
return startPosition;
}
public int getIndex(int[] A, int target) {
int i = 0;
int j = A.length - 1;
while (i <= j) {
int mid = (int) ((i + j) / 2);
if (A[mid] == target) {
return mid;
} else if (A[mid] > target) {
j = mid - 1;
} else {
i = mid + 1;
}
}
return -1;
}
}
本文介绍了一种算法,能够在已排序的整数数组中找到给定目标值的起始和结束位置,符合O(log n)的时间复杂度要求。如果未找到目标值,则返回[-1,-1]。例如,在数组[5,7,7,8,8,10]中查找8,将返回[3,4]。
3251

被折叠的 条评论
为什么被折叠?



