HashMap和Hashtable的区别
转自:http://www.importnew.com/7010.html
HashMap和Hashtable都实现了Map接口,但决定用哪一个之前先要弄清楚它们之间的分别。主要的区别有:线程安全性,同步(synchronization),以及速度。
- HashMap几乎可以等价于Hashtable,除了HashMap是非synchronized的,并可以接受null(HashMap可以接受为null的键值(key)和值(value),而Hashtable则不行)。
- HashMap是非synchronized,而Hashtable是synchronized,这意味着Hashtable是线程安全的,多个线程可以共享一个Hashtable;而如果没有正确的同步的话,多个线程是不能共享HashMap的。Java 5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。
- 另一个区别是HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException,但迭代器本身的remove()方法移除元素则不会抛出ConcurrentModificationException异常。但这并不是一个一定发生的行为,要看JVM。这条同样也是Enumeration和Iterator的区别。
- 由于Hashtable是线程安全的也是synchronized,所以在单线程环境下它比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。
- HashMap不能保证随着时间的推移Map中的元素次序是不变的。
要注意的一些重要术语:
1) sychronized意味着在一次仅有一个线程能够更改Hashtable。就是说任何线程要更新Hashtable时要首先获得同步锁,其它线程要等到同步锁被释放之后才能再次获得同步锁更新Hashtable。
2) Fail-safe和iterator迭代器相关。如果某个集合对象创建了Iterator或者ListIterator,然后其它的线程试图“结构上”更改集合对象,将会抛出ConcurrentModificationException异常。但其它线程可以通过set()方法更改集合对象是允许的,因为这并没有从“结构上”更改集合。但是假如已经从结构上进行了更改,再调用set()方法,将会抛出IllegalArgumentException异常。
3) 结构上的更改指的是删除或者插入一个元素,这样会影响到map的结构。
我们能否让HashMap同步?
HashMap可以通过下面的语句进行同步:
Map m = Collections.synchronizeMap(hashMap);
结论
Hashtable和HashMap有几个主要的不同:线程安全以及速度。仅在你需要完全的线程安全的时候使用Hashtable,而如果你使用Java 5或以上的话,请使用ConcurrentHashMap吧。
Array转ArrayList
当需要把Array转成ArrayList的时候,开发人员经常这样做:
List<String> list = Arrays.asList(arr);
Arrays.asList()会返回一个ArrayList,但是要特别注意,这个ArrayList是Arrays类的静态内部类,并不是java.util.ArrayList类。java.util.Arrays.ArrayList类实现了set(), get(),contains()方法,但是并没有实现增加元素的方法(事实上是可以调用add方法,但是没有具体实现,仅仅抛出UnsupportedOperationException异常),因此它的大小也是固定不变的。为了创建一个真正的java.util.ArrayList,你应该这样做:
ArrayList<String> arrayList = new ArrayList<String>(Arrays.asList(arr));
ArrayList的构造方法可以接收一个Collection类型,而java.util.Arrays.ArrayList已经实现了该接口。
判断一个数组是否包含某个值
开发人员经常这样做:
Set<String> set = new HashSet<String>(Arrays.asList(arr));
return set.contains(targetValue);
以上代码可以正常工作,但是没有必要将其转换成set集合,将一个List转成Set需要额外的时间,其实我们可以简单的使用如下方法即可:
Arrays.asList(arr).contains(targetValue);
或者
for(String s: arr){
if(s.equals(targetValue))
return true;
}
return false;
第一种方法可读性更强。
在循环内部删除List中的一个元素
考虑如下代码,在迭代期间删除元素:
ArrayList<String> list = new ArrayList<String>(Arrays.asList("a", "b", "c","d"));
for (int i = 0; i < list.size(); i++) {
list.remove(i);
}
System.out.println(list);
结果打印:
[b, d]
在上面这个方法中有一系列的问题,当一个元素被删除的时候,list大小减小,然后原先索引指向了其它元素。所以如果你想在循环里通过索引来删除多个元素,将不会正确工作。
你也许知道使用迭代器是在循环里删除元素的正确方式,或许你也知道foreach循环跟迭代器很类似,但事实情况却不是这样,如下代码:
ArrayList<String> list = new ArrayList<String>(Arrays.asList("a", "b", "c","d"));
for (String s : list) {
if (s.equals("a"))
list.remove(s);
}
将抛出ConcurrentModificationException异常。
然而接下来的代码却是OK的,使用的是迭代器删除而不是集合本身进行删除:
ArrayList<String> list = new ArrayList<String>(Arrays.asList("a", "b", "c","d"));
Iterator<String> iter = list.iterator();
while (iter.hasNext()) {
String s = iter.next();
if (s.equals("a")) {
iter.remove();
}
}
next()方法需要在remove()方法之前被调用,在foreach循环里,编译器会在删除元素操作化调用next方法,这导致了ConcurrentModificationException异常。更多详细信息,可以查看ArrayList.iterator()的源码。
Java ConcurrentModificationException异常原因和解决方法
http://www.cnblogs.com/dolphin0520/p/3933551.html
一.ConcurrentModificationException异常出现的原因
先看下面这段代码:
public class Test {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(2);
Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
if(integer==2)
list.remove(integer);
}
}
}
运行结果
从异常信息可以发现,异常出现在checkForComodification()方法中。
我们不忙看checkForComodification()方法的具体实现,我们先根据程序的代码一步一步看ArrayList源码的实现:
首先看ArrayList的iterator()方法的具体实现,查看源码发现在ArrayList的源码中并没有iterator()这个方法,那么很显然这个方法应该是其父类或者实现的接口中的方法,我们在其父类AbstractList中找到了iterator()方法的具体实现,下面是其实现代码:
public Iterator<E> iterator() {
return new Itr();
}
从这段代码可以看出返回的是一个指向Itr类型对象的引用,我们接着看Itr的具体实现,在AbstractList类中找到了Itr类的具体实现,它是AbstractList的一个成员内部类,下面这段代码是Itr类的所有实现:
private class Itr implements Iterator<E> {
int cursor = 0;
int lastRet = -1;
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
public E next() {
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
首先我们看一下它的几个成员变量:
cursor:表示下一个要访问的元素的索引,从next()方法的具体实现就可看出
lastRet:表示上一个访问的元素的索引
expectedModCount:表示对ArrayList修改次数的期望值,它的初始值为modCount。
modCount是AbstractList类中的一个成员变量
protected transient int modCount = 0;
该值表示对List的修改次数,查看ArrayList的add()和remove()方法就可以发现,每次调用add()方法或者remove()方法就会对modCount进行加1操作。
好了,到这里我们再看看上面的程序:
当调用list.iterator()返回一个Iterator之后,通过Iterator的hashNext()方法判断是否还有元素未被访问,我们看一下hasNext()方法,hashNext()方法的实现很简单:
public boolean hasNext() {
return cursor != size();
}
如果下一个访问的元素下标不等于ArrayList的大小,就表示有元素需要访问,这个很容易理解,如果下一个访问元素的下标等于ArrayList的大小,则肯定到达末尾了。
然后通过Iterator的next()方法获取到下标为0的元素,我们看一下next()方法的具体实现:
public E next() {
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
这里是非常关键的地方:首先在next()方法中会调用checkForComodification()方法,然后根据cursor的值获取到元素,接着将cursor的值赋给lastRet,并对cursor的值进行加1操作。初始时,cursor为0,lastRet为-1,那么调用一次之后,cursor的值为1,lastRet的值为0。注意此时,modCount为0,expectedModCount也为0。
接着往下看,程序中判断当前元素的值是否为2,若为2,则调用list.remove()方法来删除该元素。
我们看一下在ArrayList中的remove()方法做了什么:
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}
通过remove方法删除元素最终是调用的fastRemove()方法,在fastRemove()方法中,首先对modCount进行加1操作(因为对集合修改了一次),然后接下来就是删除元素的操作,最后将size进行减1操作,并将引用置为null以方便垃圾收集器进行回收工作。
那么注意此时各个变量的值:对于iterator,其expectedModCount为0,cursor的值为1,lastRet的值为0。
对于list,其modCount为1,size为0。
接着看程序代码,执行完删除操作后,继续while循环,调用hasNext方法()判断,由于此时cursor为1,而size为0,那么返回true,所以继续执行while循环,然后继续调用iterator的next()方法:
注意,此时要注意next()方法中的第一句:checkForComodification()。
在checkForComodification方法中进行的操作是:
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
如果modCount不等于expectedModCount,则抛出ConcurrentModificationException异常。
很显然,此时modCount为1,而expectedModCount为0,因此程序就抛出了ConcurrentModificationException异常。
到这里,想必大家应该明白为何上述代码会抛出ConcurrentModificationException异常了。
关键点就在于:调用list.remove()方法导致modCount和expectedModCount的值不一致。
注意,像使用for-each进行迭代实际上也会出现这种问题。
二.在单线程环境下的解决办法
既然知道原因了,那么如何解决呢?
其实很简单,细心的朋友可能发现在Iterator类中也给出了一个remove()方法:
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
在这个方法中,删除元素实际上调用的就是list.remove()方法,但是它多了一个操作:
expectedModCount = modCount;
因此,在迭代器中如果要删除元素的话,需要调用Itr类的remove方法。
将上述代码改为下面这样就不会报错了:
public class Test {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(2);
Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
if(integer==2)
iterator.remove(); //注意这个地方
}
}
}
三.在多线程环境下的解决方法
上面的解决办法在单线程环境下适用,但是在多线程下适用吗?看下面一个例子:
public class Test {
static ArrayList<Integer> list = new ArrayList<Integer>();
public static void main(String[] args) {
list.add(1);
list.add(2);
list.add(3);
list.add(4);
list.add(5);
Thread thread1 = new Thread(){
public void run() {
Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
System.out.println(integer);
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
};
Thread thread2 = new Thread(){
public void run() {
Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
if(integer==2)
iterator.remove();
}
};
};
thread1.start();
thread2.start();
}
}
运行结果:
有可能有朋友说ArrayList是非线程安全的容器,换成Vector就没问题了,实际上换成Vector还是会出现这种错误。
原因在于,虽然Vector的方法采用了synchronized进行了同步,但是实际上通过Iterator访问的情况下,每个线程里面返回的是不同的iterator,也即是说expectedModCount是每个线程私有。假若此时有2个线程,线程1在进行遍历,线程2在进行修改,那么很有可能导致线程2修改后导致Vector中的modCount自增了,线程2的expectedModCount也自增了,但是线程1的expectedModCount没有自增,此时线程1遍历时就会出现expectedModCount不等于modCount的情况了。
因此一般有2种解决办法:
1)在使用iterator迭代的时候使用synchronized或者Lock进行同步;
2)使用并发容器CopyOnWriteArrayList代替ArrayList和Vector。
关于并发容器的内容将在下一篇文章中讲述。
参考资料:
http://blog.youkuaiyun.com/izard999/article/details/6708738
http://www.2cto.com/kf/201403/286536.html
最好不要使用集合原始类型(raw type)
在Java中,原始类型(raw type)和无界通配符类型很容易让人混淆。举个Set的例子,Set是原始类型,而Set是无界通配符类型。请看如下代码,add方法使用了一个原始类型的List作为入参:
public static void add(List list, Object o){
list.add(o);
}
public static void main(String[] args){
List<String> list = new ArrayList<String>();
add(list, 10);
String s = list.get(0);
}
运行以上代码将会抛出异常:
Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
at …
使用原始类型集合非常危险,因为它跳过了泛型类型检查,是不安全的。另外,Set, Set, 和Set这三个有很大的不同,具体请看:类型擦除和Raw type vs. Unbounded wildcard。
String、StringBuffer、StringBuilder
String源码中无论是sub操、concat还是replace操作都不是在原有的字符串上进行的,而是重新生成了一个新的字符串对象。也就是说进行这些操作后,最原始的字符串并没有被改变。
在这里要永远记住一点:
“对String对象的任何改变都不影响到原对象,相关的任何change操作都会生成新的对象”。
StringBuilder和StringBuffer类拥有的成员属性以及成员方法基本相同,区别是StringBuffer类的成员方法前面多了一个关键字:synchronized,不用多说,这个关键字是在多线程访问时起到安全保护作用的,也就是说StringBuffer是线程安全的。