原来我还不会学习

本文分享了一位学生从盲目努力到高效学习的心路历程。作者通过亲身经历讲述了如何从过度消耗时间的低效学习方式转变为注重质量与效率相结合的学习方法,并强调了灵活思考、劳逸结合的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        做了十多年的学生了,自认为还挺会学习了。小学、初中上课听,作业一做就玩儿了;上了高中就变成只玩儿,不做作业了,成了差班的差生。在高三的时候,努力了一把,来到了重点大学。那一年花费了太多的时间,比尔呢还在睡觉,我就已经起床了,别人在玩儿的时候我还在埋头自习。可能也正是因为这接近一年的努力让我收获了不少。就下意识的认为,只有比别人花费更多的时间,才可能做的更好。怀揣着无限的憧憬,我来到了大学。大一的时候延续高三的学习作风,成了别人眼中的学霸。可能是学知识学的太死了,自己也没想着扩充点儿其他的知识,只知道抱着书本看。一年下来除了成绩好点儿,其他没太大收获。就连这成绩都觉得对不起我花费的时间。大二的时候我开始转变了,看课外书、做兼职、办活动参加比赛,也以此为理由开始逃课、不做作业了。考试前加入了考前突击队。其实这点时间是完全补得起来的。但由于信心不足,也静不下心来看书。大二一年下来成绩平平。我又再找机会改变了......

        大三,我选择了一条与大多数同学不一样的道路,开学一个多月找了个实习。是我喜欢的产品经理实习。有点不敢想象的是9月份确定了我以后想做这个,10月底付诸实践,找到了产品实习的工作。自己做事儿有点沉不下来,太着急了一点。

       实习的公司挺不错的,带我的老大也很帮!在这儿挺开心的,但上班两个月后,发现了自己的变化,曾经上班是多么积极,下班都还想做,但现在开始有点儿不想上班了,早上起床的时候有点力不从心的感觉。才发现我之前的观念:一定要比别人花更多的时间才可以,错了。这样短期的拼是可以的,但要长期这样下去,会有点力不从心的感觉。人要勤奋、有灵性、专注才可能做好。特别是要有灵性。

       学习、工作不光是坐在那儿做的时候才可以。什么时候都可以学习,向身边的人学习。一定要学会管理时间,尽量的增大投入产出比。有时候学习太死,就像百度个东西,舍不得花时间看俺搜到的值得一看的东西,一心就想找自己搜索的往往花了大量的时间,什么也没学到。昨天早上问起男朋友问什么要读博,他的回答让我感触颇多。还以为他这专业都读到博士了,找工作的时候要他放弃的话,他是不肯的,没想到他告诉我,他学的是学习的方法、思想、为人处事,这些是金钱买不到的,将受用一生。很多时候他都在学习、思考,说着无心、听者有意。很多事过后他都会反思。

     学东西不要只看重眼前即得的利益,更要看重长远的发展。生活中多思考,思考的深一点儿,不要太过肤浅,去理解,做事儿不要太死板,学会变通。

     学习、工作中一定要劳逸结合,放开的玩儿、拼命的做。再忙也要停下脚步来思考,不要因为繁忙而迷失了自己,最终忘了自己是为了什么而忙。因为有灵性可以花费更少的时间超过没有灵性的人,花费少多一些的时间超过跟自己一样有灵性的人。

      

<think>嗯,用户现在在学习算法竞赛,想要了解启发式合并,并且希望由浅入深地讲解,还要用C++的例子来说明。那我得先理清楚启发式合并的基本概念,然后逐步深入,最后给出代码示例。 首先,启发式合并是什么?可能用户之前学过并查集,或者普通的合并方法,但遇到某些情况下效率不高的问题。启发式合并应该是一种优化合并操作的方法,可能通过选择合并的顺序或方式,减少时间复杂度。比如在并查集中的按秩合并,可能就是一种启发式合并的应用。不过用户可能指的是更一般的数据结构合并时的优化策略。 那启发式合并的核心思想应该是每次合并两个集合时,总是将较小的集合合并到较大的集合中,这样可以减少总的操作次数。比如,如果每次合并时都把小集合的元素移动到大集合里,那么每个元素被移动的次数不会超过logN次,因为每次移动后所在的集合大小至少翻倍。这样总的时间复杂度就能控制在O(N logN)级别。 接下来需要解释为什么这种方法有效。比如,假设有两个集合A和B,大小分别为|A|和|B|,且|A|<=|B|。那么将A合并到B中,这样A中的每个元素所在的集合大小至少是原来的两倍(因为B的大小比A大)。因此,每个元素最多被合并logN次,总操作次数就是O(N logN)。 接下来,可能需要举一个具体的例子,比如合并链表或者树结构的时候使用启发式合并。或者是在处理并查集的时候,按大小合并的情况。用户可能需要具体的应用场景,比如并查集的优化,或者在处理某些数据结构(比如平衡树、链表)时的合并操作。 然后,需要用C++来举例说明。比如,可以用并查集的例子,或者用其他数据结构,比如集合的合并。例如,维护多个集合,每个集合用某种结构存储,合并的时候总是将小的合并到大的里面,这样可以减少时间。 比如,可以举一个并查集的例子。并查集的按秩合并就是启发式合并的一种。在并查集的实现中,每个集合有一个父节点,还有一个秩(rank)或者大小。合并的时候,总是将秩较小的根指向秩较大的根。这样能保证树的高度较低,提高查找效率。这时候可以给出具体的代码示例,比如并查集的实现,包含路径压缩和按秩合并。 或者,举一个更通用的例子,比如合并两个链表,或者合并两个平衡二叉搜索树的时候,如何选择合并顺序以减少时间复杂度。例如,合并两个集合的时候,总是遍历较小的集合,将其元素逐个插入到较大的集合中,这样总的时间复杂度较低。 比如,用C++中的std::set来举例。假设有多个set,每次合并两个set的时候,总是将较小的set中的元素插入到较大的set中。这样可以保证每个元素被插入的次数不超过logN次,因为每次插入后所在的集合大小至少翻倍。这样总的时间复杂度是O(N logN logM),其中M是元素的大小?或者可能更优? 例如,代码可能如下: void merge(set<int> &a, set<int> &b) { if (a.size() > b.size()) { swap(a, b); } for (auto x : a) { b.insert(x); } a.clear(); } 这样每次合并的时候,总是将较小的集合合并到较大的里面。这样每个元素被插入的次数是logN次,每次插入的时间复杂度是O(logM),所以总的时间复杂度是O(N logN logM)。不过这可能适用于元素可排序的情况,比如使用平衡树结构的集合。 另一个例子是并查集的实现,其中按秩合并是启发式合并的一种应用。例如: class DSU { vector<int> parent; vector<int> size; public: DSU(int n) { parent.resize(n); size.resize(n, 1); for (int i=0; i<n; ++i) parent[i] = i; } int find(int x) { if (parent[x] != x) parent[x] = find(parent[x]); return parent[x]; } void unite(int x, int y) { x = find(x); y = find(y); if (x == y) return; if (size[x] < size[y]) swap(x, y); parent[y] = x; size[x] += size[y]; } }; 这里,unite函数中总是将较小的集合合并到较大的集合里。这里的大小指的是集合的元素个数。这样可以保证树的高度较低,从而find操作的时间复杂度几乎是常数。 但用户可能想了解的不仅仅是并查集中的情况,而是更广泛的启发式合并应用。比如在处理某些数据结构时,比如链表、数组或者树结构的合并,如何利用启发式合并来优化。 比如,在解决某些问题时,比如动态连接问题,或者离线查询处理,可能需要多次合并不同的数据结构,这时候使用启发式合并可以显著减少时间。 另一个例子是,在树上处理子树问题的时候,比如每个节点维护一个颜色的集合,当处理子树时,将子节点的集合合并到父节点。这时候如果采用启发式合并,每次将较小的子树集合合并到较大的,可以降低总的时间复杂度。 例如,解决树上每个节点的颜色数量问题。每个节点有一个颜色集合,初始时只有自己的颜色。然后从叶子节点向上合并,每个父节点收集所有子节点的颜色集合。这时候,如果每次合并时将较小的集合合并到较大的集合,就能有效减少总操作次数。 这时候可以用C++中的unordered_set来举例: void dfs(int node, int parent, vector<unordered_set<int>> &colors) { for (auto child : children[node]) { if (child != parent) { dfs(child, node, colors); // 合并子节点的colors到当前节点 if (colors[node].size() < colors[child].size()) { swap(colors[node], colors[child]); // 保证node的集合较大 } for (int color : colors[child]) { colors[node].insert(color); } colors[child].clear(); // 可选,释放内存 } } } 这样,每个节点的合并操作都是将较小的集合合并到较大的,从而减少总的插入次数。每个颜色被插入的次数最多是logN次,所以总时间复杂度是O(N logN)。 总结一下,启发式合并的关键点在于每次合并时,总是将较小的结构合并到较大的结构中,这样每个元素被处理的次数减少,从而降低总的时间复杂度。应用场景包括并查集、树上的子树问题、集合合并等。代码示例可以根据不同的应用场景来展示,比如并查集、颜色集合的合并等。 现在需要考虑用户的学习阶段。用户可能在算法竞赛中遇到需要高效合并的问题,比如某些题目需要处理大量合并操作,而普通的暴力合并会导致超时。这时候启发式合并就能派上用场。例如,Codeforces或ACM竞赛中的某些题目,可能需要处理子树信息合并,这时候启发式合并可以优化时间复杂度。 可能用户的问题点在于理解为什么这样合并能优化时间,或者如何在实际问题中应用。因此,在讲解时,需要强调时间复杂度分析,以及具体例子中的操作步骤。 可能还需要比较暴力合并和启发式合并的时间复杂度差异。例如,如果每次合并都是简单地将一个集合的所有元素插入另一个,那么最坏情况下,每次合并都是O(n)时间,总的时间复杂度可能是O(n²)。而使用启发式合并后,总的时间复杂度降低到O(n logn)。 最后,C++的例子需要具体且易于理解。可能用户对STL比较熟悉,所以使用std::set或unordered_set的例子会更直观。或者使用并查集的例子,因为并查集是算法竞赛中的常见结构。 综上所述,我的回答结构应该是: 1. 定义启发式合并:将较小的集合合并到较大的集合,减少操作次数。 2. 解释原理:每个元素被移动的次数最多logN次,总复杂度O(N logN)。 3. 应用场景:并查集按秩合并、子树信息合并、集合合并等。 4. C++示例: a. 并查集的实现(按大小合并)。 b. 树上颜色统计问题的启发式合并。 5. 分析时间复杂度和优势。</think>好的!我将由浅入深为你讲解启发式合并(Heuristic Merge),并用 C++ 举例说明其实现。 --- ### **一、基础概念** **启发式合并** 是一种优化合并操作的策略,核心思想是:**每次合并两个集合时,总是将较小的集合合并到较大的集合中**。这样能减少重复操作次数,从而降低整体时间复杂度。 #### **为什么需要它?** 假设直接合并两个大小为 `n` 和 `m` 的集合(`n < m`),若将大的合并到小的,后续操作可能需要频繁处理更大的集合。而将小的合并到大的,后续操作会更高效。 --- ### **二、时间复杂度分析** - **普通合并**:最坏情况每次合并都需要 `O(n)` 时间,合并 `n` 次的总时间为 `O(n²)`。 - **启发式合并**:每个元素最多被合并 `O(log n)` 次(因为每次合并后集合大小至少翻倍),总时间优化为 `O(n log n)`。 --- ### **三、应用场景** 1. **并查集(按秩合并)** 2. **树上的子树信息合并**(如统计子树颜色) 3. **集合合并问题**(如动态维护多个集合) --- ### **四、C++ 代码示例** #### **1. 并查集的启发式合并(按大小合并)** ```cpp class DSU { vector<int> parent; vector<int> size; public: DSU(int n) { parent.resize(n); size.resize(n, 1); for (int i = 0; i < n; i++) parent[i] = i; } int find(int x) { if (parent[x] != x) parent[x] = find(parent[x]); // 路径压缩 return parent[x]; } void unite(int x, int y) { x = find(x), y = find(y); if (x == y) return; // 启发式合并:小集合合并到大集合 if (size[x] < size[y]) swap(x, y); parent[y] = x; size[x] += size[y]; } }; ``` #### **2. 树上统计子树颜色(启发式合并应用)** 假设树节点有颜色,求每个节点的子树中颜色种类数: ```cpp #include <vector> #include <unordered_set> using namespace std; void dfs(int u, int parent, vector<vector<int>>& tree, vector<unordered_set<int>>& subtreeColors, vector<int>& color) { subtreeColors[u].insert(color[u]); // 当前节点的颜色 for (int v : tree[u]) { if (v == parent) continue; dfs(v, u, tree, subtreeColors, color); // 启发式合并:将小子树合并到大子树 if (subtreeColors[u].size() < subtreeColors[v].size()) { swap(subtreeColors[u], subtreeColors[v]); } // 合并子树颜色 for (int c : subtreeColors[v]) { subtreeColors[u].insert(c); } subtreeColors[v].clear(); // 可选,释放内存 } // 此时 subtreeColors[u] 包含子树所有颜色 } int main() { int n = 100; // 节点数 vector<vector<int>> tree(n); vector<int> color(n); vector<unordered_set<int>> subtreeColors(n); // 假设 tree 和 color 已初始化 dfs(0, -1, tree, subtreeColors, color); return 0; } ``` --- ### **五、关键点总结** 1. **合并方向**:总是小集合合并到大集合。 2. **复杂度保证**:每个元素最多被合并 `O(log n)` 次。 3. **实现技巧**:使用 `swap` 确保操作对象始终是小集合。 4. **适用问题**:需要频繁合并的场景(如并查集、树上统计)。 --- ### **六、习题推荐** 1. [Codeforces 600E - Lomsat gelral](https://codeforces.com/problemset/problem/600/E)(经典启发式合并应用题) 2. 并查集相关题目(如动态连通性问题) 希望这些内容能帮助你掌握启发式合并!如果有更多问题,欢迎继续提问~ 😊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值