GCDTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 15624 Accepted Submission(s): 6013 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Input The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Output For each test case, print the number of choices. Use the format in the example.
Sample Input 2 1 3 1 5 1 1 11014 1 14409 9
Sample Output Case 1: 9 Case 2: 736427 Hint For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
Source 2008 “Sunline Cup” National Invitational Contest
Recommend wangye | We have carefully selected several similar problems for you: 1689 1690 1693 1691 1692 |
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int a,b,c,d,k,kase;
long long ans1,ans2;
int prime[maxn],vis[maxn],mu[maxn];
void init()
{
int n=maxn,cnt=0;
memset(prime,0,sizeof(prime));
memset(vis,0,sizeof(vis));
memset(mu,0,sizeof(mu));
mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
mu[i]=-1;
}
for(int j=0;j<cnt&&i*prime[j]<n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else
{
mu[i*prime[j]]=0;
break;
}
}
}
}
int main()
{
int t;
scanf("%d",&t);
init();
kase=0;
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(!k)
{
printf("Case %d: 0\n",++kase);
continue;
}
b/=k,d/=k;
if(b>d) swap(b,d);
ans1=ans2=0;
for(int i=1;i<=b;i++)
{
ans1+=1LL*mu[i]*(b/i)*(d/i);
ans2+=1LL*mu[i]*(b/i)*(b/i);
}
printf("Case %d: %lld\n",++kase,ans1-ans2/2);
}
return 0;
}
本文介绍了一道关于最大公约数(GCD)的问题及其算法解决方案。问题要求找出特定区间内两数的最大公约数等于给定值的所有数对组合,并计算这些组合的数量。文中提供了一个高效的C++实现代码,通过质数筛法预处理数据来加速计算。
1151

被折叠的 条评论
为什么被折叠?



