You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any vertex from any other vertex using only its edges).
A vertex can be destroyed if this vertex has even degree. If you destroy a vertex, all edges connected to it are also deleted.
Destroy all vertices in the given tree or determine that it is impossible.
The first line contains integer n (1 ≤ n ≤ 2·105) — number of vertices in a tree.
The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ n). If pi ≠ 0 there is an edge between vertices i and pi. It is guaranteed that the given graph is a tree.
If it's possible to destroy all vertices, print "YES" (without quotes), otherwise print "NO" (without quotes).
If it's possible to destroy all vertices, in the next n lines print the indices of the vertices in order you destroy them. If there are multiple correct answers, print any.
5 0 1 2 1 2
YES 1 2 3 5 4
4 0 1 2 3
NO
In the first example at first you have to remove the vertex with index 1 (after that, the edges (1, 2) and (1, 4) are removed), then the vertex with index 2 (and edges (2, 3) and (2, 5) are removed). After that there are no edges in the tree, so you can remove remaining vertices in any order.

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
const int MAXN=200005;
int a[MAXN],deg[MAXN],n,pre[MAXN],vis[MAXN];
vector<int> ans;
vector<int> edge[MAXN];
stack<int> sta;
void dfs(int p,int x)
{
pre[x]=p;
sta.push(x);
for(int i=0;i<edge[x].size();i++)
{
int y=edge[x][i];
if(y==p)
continue;
dfs(x,y);
}
}
void dfs2(int x)
{
vis[x]=1;
if(deg[x]%2==0)
ans.push_back(x);
for(int i=0;i<edge[x].size();i++)
{
int y=edge[x][i];
deg[y]--;
if(pre[x]==y||vis[y])
continue;
dfs2(y);
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
//建树并确定节点度数
if(a[i])
{
edge[a[i]].push_back(i);
edge[i].push_back(a[i]);
deg[a[i]]++;
deg[i]++;
}
}
//把节点放入栈中,方便我们从叶子节点开始找起
dfs(0,1);
int len=sta.size();
for(int i=0;i<len;i++)
{
int k=sta.top();
sta.pop();
if(deg[k]%2==0)
dfs2(k);
}
if(ans.size()==n)//如果被删除的节点的个数是n,代表全部被删除了
{
printf("YES\n");
for(int i=0;i<ans.size();i++)
printf("%d\n",ans[i]);
}
else
{
printf("NO\n");
}
}
return 0;
}