Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 44162 | Accepted: 18976 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
经典的01背包问题,用dp[i][j]表示在前i个物品中选择体积不超过j的最大价值。状态转移方程dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+d[i]),但是这一题中如果开二维数组肯定会超内存,所以我们可以优化内存空间,观察可知dp[i][j]的值都是由i-1时的状态推出来的,所以一维数组即可。即dp[j]=max(dp[j],dp[j-w[i]]+d[i])
还要注意因为是一维的了,所以在for循环遍历的时候j要倒序,因为顺序的话就有可能使用到之前已经更新过的状态。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int dp[15000],w[5000],d[5000];
int n,m,i,j;
while(scanf("%d %d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d %d",&w[i],&d[i]);
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
for(j=m;j>=w[i];j--)
{
dp[j]=max(dp[j],dp[j-w[i]]+d[i]);
}
printf("%d\n",dp[m]);
}
}