一、本节目标
回顾并回忆以前课程中的关键思想。
描述一个ARMA模型及其阶段。
描述ARIMA和SARIMA模型并选择参数。
列出ARMA、ARIMA和SARIMA模型假设。
了解卡尔曼滤波器
二、基本概念回顾
在前面的时间序列中,了解几个基本的时间序列概念,包括平稳性、平滑性、趋势性、季节性和自相关,并构建了两种不同的模型:
MA模型:指定序列的当前值线性地取决于序列的平均值和一组先前(观察到的)白噪声误差项。
AR模型:指定序列的当前值线性地取决于它自己以前的值和随机项(一个不完全可预测的项)。
这里我们将回顾并将这两种模型类型组合成三种更复杂的时间序列模型:ARMA、ARIMA和SARIMA。