数字图像处理 图像对比度增强算法概览

本文介绍了图像对比度增强的重要性,包括线性增强、非线性增强和直方图增强等方法。重点讨论了自适应对比度增强(ACE),提到了实时ACE算法的论文、实现及代码参考,探讨了自适应图像对比度增强技术在低对比度图像处理中的应用,并提及了加速自适应对比度增强(SUACE)算法和相关资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、图像对比度增强

        图像对比度增强又叫作图像对比度拉伸或者直接称为点运算。图像亮度和对比度调整的目的之一是在合适的亮度上提供最大的细节信息,细节纹理的沟纹越深,图像越清晰。在图像处理中,图像对比度增强是最基本的、原理比较简单却很重要的一类技术。它们能根据用户的要求改变图像数据占据的灰度范围,灰度分布范围越大,图像细节呈现得越清晰,同时对图像辐射分辨率的要求越高。

        图像对比度增强以预定的方式改变一幅图像,由于黑白图像对比度的大小主要取决于图像的灰度级级差,因此为了改善对比度过小的黑白图像的识别效果,就需要扩大图像灰度级之间的级差。当前,扩大图像灰度级级差的方法很多,主要有线性增强法、非线性增强法和直方图增强法、自适应增强法(ACE算法)及其各种变体等。

1、线性增强

        线性增强法是最常见的对图像的可视化质量进行改善的方法,由于它涉及的算法简单且容易实现,并且效果明显,所以它被看成是图像处理软件中基础而且不可缺少的功能模块。线性增强法主要包括基本线性增强方法及其改善方法。

        为了避免基本线性增强算法中个别极限灰度级的不良影响,可以考虑整幅图像的一些统计特性。用图像数据的统计数字特征增强图像的对比度。这种方法就是所谓的统计量算法。

   

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值