一、特征向量和特征值
1、概念简述和应用
(1)概念简述
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。特征值和特征向量是数据科学领域的核心。
它到底有什么用?
简而言之,特征向量和特征值的概念用于确定一组重要变量(以向量的形式)以及沿不同维度(基于方差的关键维度)的尺度,以便以更好的方式分析数据。
一个线性变换通常可以由其特征值和特征向量完全描述。非常概括地说,线性映射的特征值是由变换引起的失真的度量,特征向量告诉您失真的方向。 这对于降维PCA(主成分分析)非常有用。
一个简单的例子是特征向量在变换中不改变方向。
(2)一些应用