Opencv学习笔记 超像素分割

本文介绍了计算机视觉中的图像分割技术,特别是超像素分割的概念,它将图像细分为特征相似的像素集合,保留物体边界信息。超像素在跟踪、标签分类、视频前景分割等领域有广泛应用,提供高效处理速度。文中还提到了OpenCV中的超像素分割算法如SLIC、SEEDS和LSC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)(也被称作超像素)的过程。超像素由一系列位置相邻且颜色、亮度、纹理等特征相似的像素点组成的小区域。这些小区域大多保留了进一步进行图像分割的有效信息,且一般不会破坏图像中物体的边界信息。 图像分割的结果是图像上子区域的集合(这些子区域的全体覆盖了整个图像),或是从图像中提取的轮廓线的集合(例如边缘检测)。一个子区域中的每个像素在某种特性的度量下或是由计算得出的特性都是相似的,例如颜色、亮度、纹理。邻接区域在某种特性的度量下有很大的不同。

        超像素分割有什么用处?超像素可以用来做跟踪;可以做标签分类;视频前景分割,因为相比像素,超像素处理速度会快几十倍、几百倍甚至更高;超像素还可以用于骨架提取、人体姿态估计、医学图像分割等方面。

        Python参考代码如下:

# import the necessary packages
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage.util import img_as_float
from skimage import io
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import argparse
# construct the argument pars
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值