论文阅读:Combining volumetric dental CT and optical scan data for teeth modeling

本文介绍了一种结合体积牙科CT图像与光学扫描数据进行牙齿模型构建的方法。该方法利用协同分割技术和graph-cut算法实现了CT图像与网格数据的无缝拼接,最终输出完整的单排牙齿网格模型。

【论文信息】

Combining volumetric dental CT and optical scan data for teeth modeling

2015 CAD

contribution:

  • CT结合网格,新颖
  • 协同分割,graph-cut
  • 两种数据无缝拼接

输入- CT和Mesh
输出- 完整牙齿网格模型(单排牙列)

【背景】

协同分割的应用,图片图像【10,11】,医学图像分割【12,13】。其中本文的应用类似于【10】。

【方法】

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
Robust controller design involves the synthesis of a controller that can handle uncertainties and disturbances in a system. This is typically done by formulating the problem as an optimization problem, where the goal is to find a controller that minimizes a cost function subject to constraints. One approach to robust controller design involves combining prior knowledge with data. Prior knowledge can come from physical laws, engineering principles, or expert knowledge, and can help to constrain the search space for the controller design. Data, on the other hand, can provide information about the behavior of the system under different conditions, and can be used to refine the controller design. The combination of prior knowledge and data can be done in a number of ways, depending on the specific problem and the available information. One common approach is to use a model-based design approach, where a mathematical model of the system is used to design the controller. The model can be based on physical laws, or it can be derived from data using techniques such as system identification. Once a model is available, prior knowledge can be incorporated into the controller design by specifying constraints on the controller parameters or the closed-loop system response. For example, if it is known that the system has a certain level of damping, this can be used to constrain the controller design to ensure that the closed-loop system response satisfies this requirement. Data can be used to refine the controller design by providing information about the uncertainties and disturbances that the system is likely to encounter. This can be done by incorporating data-driven models, such as neural networks or fuzzy logic systems, into the controller design. These models can be trained on data to capture the nonlinearities and uncertainties in the system, and can be used to generate control signals that are robust to these uncertainties. Overall, combining prior knowledge and data is a powerful approach to robust controller design, as it allows the designer to leverage both physical principles and empirical data to design a controller that is robust to uncertainties and disturbances.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值