import torch
import torchvision
from torch import nn
from torch.nn import Sequential
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torch.utils.data import DataLoader
#设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device",device)
#准备数据集
train_data=torchvision.datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_data=torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(),download=True)
#获取数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练集长度:{}".format(train_data_size))
print("测试集长度:{}".format(test_data_size))
#使用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
#搭建神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.model1=Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x=self.model1(x)
return x
#创建模型
net=Net().to(device)
#损失函数
loss_fn=nn.CrossEntropyLoss().to(device)
#优化器
optimizer=torch.optim.SGD(net.parameters(), lr=0.01)
#训练参数
epoch=10
total_train_step=0
total_test_step=0
writer=SummaryWriter(log_dir='logs')
for i in range(epoch):
print("-----epoch:{}----".format(i))
net.train()
train_total_loss=0
train_total_acc=0
#开始训练
for data in train_dataloader:
imgs, labels = data
imgs=imgs.to(device)
labels=labels.to(device)
output=net(imgs)#真实结果
loss = loss_fn(output, labels)
#模型优化
optimizer.zero_grad()#梯度清零
loss.backward() #反向传播,找错
optimizer.step()#改错
total_train_step += 1
train_total_loss+=loss.item()
accuracy_cnt=(output.argmax(1)==labels).sum().item()
train_total_acc+=accuracy_cnt#该轮总的正确个数
print("train_accuracy:{:.2f}%, train_loss:{:.4f}".format((train_total_acc/train_data_size)*100,train_total_loss/train_data_size))
writer.add_scalar('train_loss', train_total_loss/train_data_size, total_train_step)
#测试集开始
net.eval()
total_test_loss=0
total_accuracy=0
with torch.no_grad():
for data in test_dataloader:
imgs, labels = data
output=net(imgs)
loss = loss_fn(output, labels)
total_test_loss += loss.item()
accuracy_res=(output.argmax(1)==labels).sum().item()
total_accuracy += accuracy_res
print("test Accuracy:{:.2f}%,test loss".format((total_test_loss/test_data_size)*100),total_test_loss/test_data_size)
writer.add_scalar('test_loss', total_test_loss/test_data_size, total_train_step)
writer.add_scalar('test_accuracy', total_accuracy/test_data_size, total_train_step)
total_test_step+=1
writer.close()
完整训练过程
最新推荐文章于 2025-12-15 11:45:10 发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
3037

被折叠的 条评论
为什么被折叠?



