完整训练过程

import torch
import torchvision
from torch import nn
from torch.nn import Sequential
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torch.utils.data import DataLoader

#设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device",device)

#准备数据集
train_data=torchvision.datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_data=torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(),download=True)
#获取数据集长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练集长度:{}".format(train_data_size))
print("测试集长度:{}".format(test_data_size))

#使用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#搭建神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.model1=Sequential(
        nn.Conv2d(3, 32, 5, padding=2),
        nn.MaxPool2d(2),
        nn.Conv2d(32, 32, 5, padding=2),
        nn.MaxPool2d(2),
        nn.Conv2d(32, 64, 5, padding=2),
        nn.MaxPool2d(2),
        nn.Flatten(),
        nn.Linear(1024, 64),
        nn.Linear(64, 10)
        )
    def forward(self, x):
       x=self.model1(x)
       return x
#创建模型
net=Net().to(device)

#损失函数
loss_fn=nn.CrossEntropyLoss().to(device)
#优化器
optimizer=torch.optim.SGD(net.parameters(), lr=0.01)

#训练参数
epoch=10
total_train_step=0
total_test_step=0
writer=SummaryWriter(log_dir='logs')

for i in range(epoch):
    print("-----epoch:{}----".format(i))
    net.train()
    train_total_loss=0
    train_total_acc=0
    #开始训练
    for data in train_dataloader:
        imgs, labels = data
        imgs=imgs.to(device)
        labels=labels.to(device)
        output=net(imgs)#真实结果
        loss = loss_fn(output, labels)
        #模型优化
        optimizer.zero_grad()#梯度清零
        loss.backward() #反向传播,找错
        optimizer.step()#改错
        total_train_step += 1

        train_total_loss+=loss.item()
        accuracy_cnt=(output.argmax(1)==labels).sum().item()
        train_total_acc+=accuracy_cnt#该轮总的正确个数

    print("train_accuracy:{:.2f}%, train_loss:{:.4f}".format((train_total_acc/train_data_size)*100,train_total_loss/train_data_size))
    writer.add_scalar('train_loss', train_total_loss/train_data_size, total_train_step)
    #测试集开始
    net.eval()
    total_test_loss=0
    total_accuracy=0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, labels = data
            output=net(imgs)
            loss = loss_fn(output, labels)
            total_test_loss += loss.item()
            accuracy_res=(output.argmax(1)==labels).sum().item()
            total_accuracy += accuracy_res

    print("test Accuracy:{:.2f}%,test loss".format((total_test_loss/test_data_size)*100),total_test_loss/test_data_size)
    writer.add_scalar('test_loss', total_test_loss/test_data_size, total_train_step)
    writer.add_scalar('test_accuracy', total_accuracy/test_data_size, total_train_step)
    total_test_step+=1
writer.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值